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1. Statement of Problem

The completed research to be described in this report is concerned with the

propagation of waves in geological materials. Since such materials are made up from

sands, clays and rocks, they contain granular and porous microstructures. These local

microstructures or fabric (as it is sometimes referred to) are a function of the geometry

of the material distribution, and produce non-continuous fields of mass density, stress,

strain, displacement, etc. These types of materials are therefore difficult to model using

classical continuum mechanics such as elasticity, plasticity or viscoelasticity theories.

One of the key features of this research was to investigate the effect of this

microstructure on the propagation of waves produced by explosive loadings of short

duration.

In many cases, geological materials will be composed of sands, gravel and/or

crushed rock, and can therefore be categorized as a granulai . -ium. Such a medium

can be characterized, for modeling purposes, as a collection of distinct particles which

can displace independently from one another and interact only through contact

mechanisms. This type of media transmits mechanical loadings through discrete paths

as determined by the geometry of the granular packing. For the case of porous media

containing various distributions of open pores, a similar direction-oriented behavioral

response will also occur.

In regard to wave propagation, our interest was involved with the transient

dynamic behavior of such a structured medium when it is subjected to explosive



loadings of 50-100.ts duration. Specific variables of interest included:

" wave speed

* inter-granular contact forces (local wave amplitude)

* wave spreading geometry

The goal of the research was to relate how the specific microstructure of the medium

effects these wave propagational variables.

In order to conduct the investigation, both theoretical and experimental methods

of study were employed. The theoretical work focused on two general methods which

included the use of a new microstructural continuum theory for modeling, and a

computational study using the so-called distinct element method to model the dynamic

behavior of granular assemblies. The microstructural continuum theory which was used

was the distributed body theory originally developed by Goodman and Cowin (see

reference 29 in paper A in the Appendix). This particular theory assumes that the

medium is distributed in space by an independent kinematical function called the

volume distribution function, and thus this theory allows the medium to contain voids

and other microstructures. In regard to the numerical modeling, the distinct element

method was used to determine the motion of each granule in particular model

assemblies. This computational scheme assumes that each granule may be modeled by

rigid bdc-,y dynamics with particle interactions having stiffness and damping properties.

The prcdicted movements of the various granules are then the result of the propagation

through the medium of disturbances which originated at the boundary loading points.

The experimental efforts employed the principles of dynamic photoelasticity along
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with high speed photography to get the complete stress field information due to

explosive loading in various granular assemblies. This technique gave complete details

about the wave velocities, dynamic contact stresses and wave spreading during the

particle contact interaction period. Assemblies containing particles of different size and

arrangements were used in the experiments. A detailed investigation was conducted to

study the influence of local microstructure oin the wave propagation phenomenon. The

experimental study also made use of electrical resistance strain gages to study wave

propagation in real earth materials. A preliminary investigation was conducted to study

dynamic load transfer in granular rock media.
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2. Summary of Results

This section briefly describes the major results of the research program.

References will be made to the reprints of our major papers which appear in the

Appendix. Details of the particular results can be found in each of the papers.

Wave Propagation in Distributed Bodies Wave propagation studies have been

conducted based upon a distributed body model of geological media. The

distributed body model employs an independent kinematical volume distribution

function which describes the way the material is distributed in space, and thus

allows the theory to generate porous and granular microstructures. The theory

uncouples the mass density of the granules from the mass density of the entire

material, and allows compressibility due to both granule compressibility and void

compaction. A one-dimensional theory of propagating singular surface

acceleration waves has been developed for particular volume distribution

functions which have application to geological materials. Three different volume

distribution functions were developed producing periodic, exponential and a

periodic-exponential material microstructures. A general computer code was

developed to calculate the results predicted from the model for a variety of

constitutive and microstructural model parameters. Results for the wave speed

and amplitude behavior as a function of these model parameters are given in

Figures 2-8 in Paper A in the Appendix. Specific relationships between the

microstructure and the wave speed and attenuation have been determined, and

these theoretical results are in general agreement with measured results.
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Distinct Element Modeling of Wave Propagation in Granular Materials The

distinct element model is a numerical scheme whi:h uses Newtonian rigid-body

mechanics to model the translational and rotational motion of each disk in a

granular assembly. The method incorporates prescribed stiffness and damping

at the contacts between each of the granules, and these model parameters were

determined from calibration tests in the experimental segment of the research

program. Ultimately the distinct element method establishes an explicit time-

stepping scheme that enables the calculation of the inter-granule contact force

between all granules at each of the selected time steps. The method is

numerically efficient so that large numbers of granules may be analyzed in a

given problem. The basic method is outlined in Paper B in the Appendix.

Comparisons of the numerical results with those from dynamic photoelasticity are

shown in Figures 4 and 5 in Paper B. These comparisons indicate reasonably

good agreement between theoretical and experimental results for the assemblies

which were studied. Inter-granular contact force distributions indicated the

dependence of microstructure on the wave propagational characteristics, and it

was discovered that the microstructural measure of the branch angle between

local granules is an effective variable to use in establishing the connection

between microstructure and wave propagation.

The Effect of Voids and Inclusions on Wave Propagation in Granular

Materials Theoretical and experimental studies have been conducted on wave

propagation in granular materials containing local discontinuities of voids and
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inclusions. The granular medium was simulated by specific assemblies of

circular disks, and the voids were created by removing particular disks from the

assembly while inclusions were created by replacing certain disks with ones of

a higher impedance material. The theoretical modeling employed the distinct

element method, and the experimental study used the technique of dynamic

photoelasticity. Comparisons were made between the computational and

experimental data on the inter-granular contact forces around each void or

inclusion, and these comparisons are shown in Figures 7-11 in Paper C in the

Appendix. Both voids and inclusions produce local wave scattering through

various reflection mnchanisms, and the results seem to indicate that the inclusions

produce higher local wave attenuation.

Experimental-Numerical Hybrid Technique of Load Transfer Coefficients for

Wave Propagation Predictions in Granular Media Experimental studies on

dynamic load transfer in granular media have been conducted through the use

of dynamic photoelasticity. The experimental data collected allows the

determination of the time dependent inter-granular contact loadings between the

granules. This leads to the calculation of load transfer coefficients, i.e. the ratio

of the maximum output contact load to the maximum input contact load, for

various packing geometries. These coefficients were then used along with the

principle of superposition to predict the peak inter-granular contact loads in

several model granular assemblies. Results of the numerical hybrid scheme were

then compared with experimental data for the assemblies investigated, see Figures
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12-15 in Paper D in the Appendix.

Influence of Local Microstructure on Wave Propagation Phenomenon A

detailed experimental study was conducted to evaluate the effect of different

microstructures or fabric of granular media on the wave propagation phenomenon.

The granular media was simulated by circular disks made of photoelastic

materials. Attention was focussed on the load transfer paths, wave velocities,

wave attenuation and the dynamic stresses which are generated at the contacts

due to the passage of stress waves. The details of the results are included in

Paper E in the Appendix. Figures 2 through 7 contain photographs showing the

full field description of the wave propagation process in different assemblies.

The paper discusses the primary and secondary load transfer paths in different

assemblies and clearly demonstrates the influence of the microstructure on the

load transfer process.

Angular Dependence of Dynamic Load fransfer Process An experimental

investigation was conducted to evaluate the dependance of packing geometry on

the dynamic load transfer in two dimensional granular chains. The results from

these experiments are shown in Paper F in the Appendix. It was shown, that

in two dimensional chains, rapid attenuation of load transfer occurs as the branch

angle increases from 0 to 90 degrees. It was also observed that the wavelength

of the loading pulse increases with the branch angle. These results are illustrated

in the Figures II and 12 of Paper F.
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Wave Propagation in Porous Media As a Function of Fluid Saturation

Dynamic photoelasticity was used to study wave propagation in a porous media

as a function of fluid saturation. The porous media was modeled as a

continuous solid containing particular arrays of holes or voids. The study

investigated the wave propagation phenomenon from a microscopic point of view

by going into the details of the , eometric nature of the porous structure. The

details of this study are given in Paper G in the Appendix. The results show

the dependence of wave velocity and attenuation on the porosity as wCel as the

microstructural arrangement of the pores.

Wave Propagation and Energy Transfer Across Contacts Between Large Bodies

This study experimentally investigated the formation of dynamic contacts between

two bodies which are much larger than the wave length of the loading pulse.

Results from this study are given in Paper H in the Appendix. Dynamic

photographs provided full field information of diffraction, reflection and

transmission process as a function of time. The results show that the individual

wave types interact with the contact region in vpecific ways as determined by

the reflection and refraction laws. It must be mentioned here that only

qualitative treatment of the data was possible in this study. Initial attempts to

quantitatively evaluate fringe pattern data were not successful.

Dynamic Load Transfer in Virgin and Damaged Rock Media Electrical

resistance strain gages were used to study dynamic load transfer in a single chain

assembly of disks fabricated from four different grades of white Vermont Marble.
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The study was preliminary in nature and the results are given in Paper I in the

Appendix. The results show the dependence of wave velocity on the

microstructure of the -ock. The effect of prior damage in rock grains on wave

propagation phenomenon was also investigated.
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5. Appendices: Reprints of Major Publications
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of these papers in the main body of this report. These complete papers provide details

of the research results.
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WAVE PROPAGATION IN DISTRIBUTED BODIES WITH

APPLICATIONS TO DYNAMIC SOIL BEHAVIOR

MARTIN H. SADD and MOHAMMAD HOSSAIN
Mechanical Engineering and Applied Mechanics

University of Rhode Island
Kingston, RI cJ2"1 --25

ABSTRACT

A study is presented which models wave propagation through materials with microstructure. The
spectfic microstructure of interest is that found in geological materials such as granular and rock media, and
the modeling is carried out using the distributed body theory of Goodman and Cowin. Wave propagation is
studied through the use of singular surface wave theory, and specific results for the wave speed and amplitude
behavior are presented. Three different types of microstructure are modeled by using different volume
distribution functions. Results of wave speed and amplitude attenuation are presented for various
microstructural model parameters.

1. INTRODUCTION

Geological materials such as sands, clays and/or rocks are complex materials and have proven to be
difficult to model using classical continuum mechanics. These types of materials may be classified as
materials with microstructure since at the micro-level the mass density along with other important field
variables are not continuous in the mathematical sense. Modeling of these materials using classical
continuum mechanics (e.g. elasticity, plasticity, viscoelasticity, etc.) has progressed to a point where
fundamentally new information will probably have to come from a theory incorporating microstructure in its
basic framework. The work herein reported is concerned with the modeling of the dynamic response of such
media. Of particular interest is the propagation of mechanical signals (i.e. wave propagation) through
materials composed of granular, rock, porous and other discontinuous structures.

Studies of geological materials with microstructure started many years ago with research on granular
materials modeled as aggregate assemblies of discs or spheres. The concept of modeling granular media as an
array of elastic particles (e.g. spheres or discs) led to the initial , 'empts at predicting wave propagation
through such media. Early work [1-6] employed a normal granular zontact force concept. This initial work
investigated the propagation velocity as a function of confining pressure, particle size and aggregate
geometry. It was discovered, however, that the classical theory of contact due only to normal forces, does
not in general accurately model real materials, and thus Duffy and Mindlin [7] proposed a theory for granular
media which included both normal and tangential contact forces. This theory produced a non-linear and
inelastic stress-strain relation.

More recent theories of granular media behavior have included statistical-stochastic approaches [8-13].
Cundall and Strack [14] proposed a numerical method called the distinct element technique for granular and
rock assemblies, and this approach has been used for rubble screens [15]. Morland [16] considered a
rock/granular media as a regularly jointed media and used an anisotropic elasticity approach. Particulate
media has also been studied by Hill and Harr based upon a diffusion equation derived from probabilistic
models [171. Endochronic theories have been applied to granular soils [18-201, and mixture theories (21] also
show some promise of modeling such media. Pore-collapse models originally developed by Carrol and Holt
[22) have been used to study the dynamic response of porous and granular media.

With regard to experimental work, the method of photoelasticity has been employed to study load
transfer in granular assemblies. Photoelasticity has been used to study static behavior [23-25]. Dynamic
photomechanics studies of granular media have been performed [26-27]. Their technique employed the use of
high speed photography to record w propagation through an assembly of birefringent discs.

Journal of Wave.Material Interaction, Vol. 3, No. 4, October 1988
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Some very interesting microstnactu-al modeling has been done with the so-called "fabric tensor" theories
for example [28]. This research has been investigating the construction of constituuve relations dependent
upon fabric tensors which describe the important microstructural features of the particular material, e. g.,
distributions of contact normal vectors. At the present time, wave propagation theories using fabric tensors
have not been developed.

Finally, granular and porous materials have been modeled by the so-called "distributed body" theory [29].
This partictiir-theory assumes that the medium is distributed in space by an independent kinematical
function called the volume distribution function. This theory has been applied to wave propagation studies
and some success has been achieved in modeling particular situations. Based upon this success, the present
work is concerned with applying distributed body theory to wave propagation in geological soil media with
particular microstructures.

The purpose of the present work is to extend the preliminary developments of the distributed body theory
for applications to geological materials. The paper starts with the basic ideas previously developed for
one-dimensional acceleration waves propagating in a distributed body. Next, specific volume distribution
functions are selected which show promise of modeling granular geological materials. Finally, a general
computer code is developed which can calculate wave speed and amplitude behavior as a function of distance
for all of the various distribution functions selected. Results from the code are shown to demonstrate the
effects of the selected volume distribution function, the constitutive parameters, and the initial wave
amplitude.

2. DISTRIBUTED BODY THEORY

The distributed body theory originally developed by Goodman and Cowin [291 was constructed to allow a
continuum theory to be applied to materials with non-continuous fields of mass density, stress, body force,
eic. Thus, the model could be used to describe the behavior of a wide variety of materials having granular
and/or porous structures. Fundamental to the theory is the assumption that, at any point in the material, the
overall mass density may be written as

p=v7 (1)

where y is the density of the granules (or matrix material) and v = v(X,t) is referred to as the volume
distribution function. This function describes the way thpmedium is distributed in space allowing for voids
or other particular granular structures. Thus, this th( uncouples the mass density of the granules from the
mass density of the entire material, and allows compressibility due to both granule compressibility and
void compaction. In general 0 < v < 1, and v is related to the porosity n and void ' ratio e by the
expressions

1
v= n - (2)

Within a one-dimensional framework, the classical balance law of conservation of linear momentum
reads

P0 1=;L+pob (3)

where T is the stress, b is the body force, x is the particle position, X is the reference position coordinate,
and ( ). indicate values in the reference state. In addition to this classical balance law, the distributed body
theory also requires an independent balance equation governing the volume distribution. In one dimension
this second equation governing void change is given by

-xpok  0 -. o (4)

where k is called the equilibrated inertia, h the equilibrated stress, and g the intrinsic body force. Physical
interpretation of the micro-structural variables k, h and g is somewhat difficult to make. In general, these
variables are related to the local contact mechanics at the granular level and can be related to particular
self-equilibrated singular stress states from classical elasticity (e. g. double force systems, centers of

Journal of Wave-Material Interaction, Vol. 3, No. 4. October 1988
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/

dilatation). It has been prg'posed [31] that k is related to the void mean surface area and to the number of
voids present, h is a result of the interaction forces between neighboring voids and will vanish when the
voids are sufficiently sep&ad and g is related to the coupling between the total deformation of the medium
and the changes in void volume.

For granular geological materials, we assume that the media is composed of compressible granules at
relatively high confining pressures so as to prevent material flow. For this case an appropriate constitutive
formulation would read

T=T(v ov , -,e) , (5)

and hence the stress depends upon the reference and current volume distributions, the gradient of the volume
distribution, and the strain c. An explicit form of relation (5) which has been proposed [321 uses an even
quadratic form in the gradient of v, i.e.

Tv[ A (v 0, v, e)+ (6)a(O9V E

The constitutive dependence on the gradient of the volume distribution ov/aX is significant and allows
an equilibrium stress to depend on this gradient. Since equation (6) involves the square of the gradient, it
will be an isotropic form in that variable (required by material frame indifference) and, hence, the stress
response will be independent of the sign of the gradient. Also, the presence of the gradient term allows the
theory to predict a generalized Mohr-Coulomb failure criterion.

First and second order moduli defind by

E= 1  [A + 1/2 I()2]

(7)

E=-= LA + 1/2 a ~

will be needed for subsequent wave analysis. Normally E>O but the second order modulus E, may be
positive or negative.

3. WAVE ANALYSIS

The basic premise of this particular wave theory lies in modeling the wave as a propagating singular
surface across which there exists a jump discontinuity in a particular variable. Dynamic loadings will
commonly produce either second-order acceleration waves, having a discontinuity in the particle acceleration
at the wave front, or first-order shock wave having a jump in the particle velocity at the wave front.
Acceleration waves will be considered here.

As mentioned, a wave is modeled as a propagating singular surface of zero thickness moving with speed
U. The jump of a quantity * across this surface is defined by [01 = 0- - 0+ where 0+ and 0- are the limiting
values of immediately ahead of and behind the wave, respectively. An acceleration wave is therefore defined
as a wave across which the particle velocity, strain, and volume distribution are continuous but their spatial
and temporal derivatives are not. Thus/this type of motion carries propagating discontinuities in the particle
acceleration .azd various other gra nts of the strain and volume distribution. The jump in the particle
acceleration i is called the wav"eamplitude, and will be denoted by a(t). Note that for compressive waves,
a(t) > 0, while for expansive waves, a(t) < 0.

Following singular surface analysis procedures which have now become somewhat standardized, specific
relations for the wave speed and amplitude behavior can be determined. Specifically, Nunziato and Walsh
[301 showed that for distributed body theory, the wave speeds are given by the roots of a quartic equation thus

Journal of Wave-Material Interaction, Vol. 3, No. 4, October 1988
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implying the existence of two types of waves with speeds given by 7

U=[1/2 + C2+ j(C 7C) + 4]

'x/ (8)

where

(vT)E+ (h )+ ( )+ ( )+

1=_._._ P= Vx 23 po k+2k (9)

with subscripts F, v and X meaning partial differentiation with respect to the indicated variable, and ( )+
meaning immediately ahead of the wave. The speed UF denotes the "fast" wave speed which is associated
predominantly with the elasticity of the granules, and will disappear if the granules are incompressible. The
quantity US is the "slow" wave speed which is connected to the compressibility of the material due to
consolidation, and will vanish if there are no voids (v = 1).

With regard to the wave amplitude behavior, Nunziato and Walsh [30] have found that the amplitude for
one-dimensional wave propagation satisfies the following nonlinear Bernoulli equation

da 2(X) 2

"X-(10)

where .I(X) and K(X) are material coefficients given in general by rather lengthy expressions. The coefficient
gI(X) is related to dispersive effects, while c(X) reflects both the elastic response of the granules and
dispersive effects. Depending on the nature of ic and gt, the theory can predict growth or decay of wave
amplitude. Using the specific constitutive form given by Eq. (6), for the case of a "fast" wave propagating
into material at rest in its reference condition, the coefficients become

[ + ( ado V a
i(X) = - LaX2 (7y] ~

UF 010

K(X) - (A)0 + 1/2 (a) °  =

where the fast wave speed is given by

IV UF= Er To (12)
with Eo and Eo being the reference values of the first and second order moduli.

In order to have real wave speeds, E0 > 0 and therefore Eq. (7) implies that

(A )°0 + 1/2 (a E)o -X 2 0 (13)

which can be regarded as an equation restricting certain constitutive and microstructural parameters.

Journal of Wave-Material Interaction, Vol. 3, No. 4, October 1988
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4. VOLUME DISTRIBUTION FUNCTIONS

In order to apply the distributed body theory and develop a wave propagation analysis, it is necessary to
have explicit constitutive forms, see for example Eq. (6), and the initial volume distribution vo(X) must also
be specified. Any proposed volume distribution function should reflect the density variations and other
microstructural features within the material. It is difficult to construct such a function which characterizes
these variations precisely and yet has the smoothness requirements to be compatible with the theory. We
will follow the approach that vo(X) should be a continuous function in order to perform certain required
differentiations and integrations and !Ihat it yield the correct average density.

As discussed previously, in constructing a wave propagation analysis, Nunziato, et al. developed a
specific volume distribution function [32]. Their work was for a granular material, PBX-9404, an explosive
powder/binder system. They proposed a periodic structure of the form

27tX
Vo(X) = v+(l-v)cos 21f (14)

where va and I are material constants.
The quantity va would be given by the overall average density of the material divided by the granule

density and is thus related to the average value of the volume distribution. The second material constant I is
referred to as a characteristic length associated with this periodic structure. Clearly I specifies the length of
the repeating units of the microstructure. For granular materials, I would be related, but not necessarily
equal, to the average grain size. In regard to this characteristic length, the work of Shahinpoor [33] is
appropriate to consider. Shahinpoor did experiments of randomly packed spherical granules on a flat surface.
His work demonstrated the concept of distinct packing geometries referred to as "Voronoi cells." It is evident
that for some packing geometries, if a periodic structure is assumed, the characteristic length I would be equal
to the Voronoi cell size, and thus could be several grain diameters.

Since the mechanical response of most geological materials like sand or gravel is affected by in situ
conditions such as overburden, the microstructure will be globally nonhomogeneous, i.e., be depth
dependent. With this in mind, another volume distribution function which can predict such a structure may
be written as

BX
V (X)= 1 -(1-vb)e (15)

where vb and B are material constants. Clearly for this case, the material becomes more dense with depth X
into the medium. The constant vb is the volume distribution at the free surface X = 0, and the constant B
determines the rate of consolidation with depth. It should be pointed out that this exponential form does not
contain any periodic structure; hence, it should produce monotonic results for the wave propagation
characteristics.

A final volume distribution function which is proposed involves the combination of the periodic form
(14) and the exponential form (15). The combined form employs simly the product of these two relations,
i.e., A,

V (X) [Va +(I Va)CosF][_1 -(-V b) e] (16)

and again va, Vb, I and B are material constants. It is evident that this form will thus produce a combined
periodic-exponential depth dependent microstructure. The three volume distribution functions given by
Eqs. (14), (15) and (16) are hown in Fig. 1.

4. WAVE MOTION RESULTS

Based upon the wave motion theory, a computer code was developed to handle any of the three volume
distribution functions given in Eqs. (14), (15) and (16). The constitutive form employs Eq. (6), with -

specific values for the two material functions a and A and their needed derivatives. With regard to the wave
speed calculations, since the variation of speed within individual grains is normally not measurable, the
developed code calculates the average wave speed. This is done through an integration process over spatial
distance employing a numerical Gauss quadrature scheme. In order to calculate the amplitude behavior, the
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non-linear differential equation (10) was numerically integrated using a fourth-order Runge-Kutta procedure.
Specific wave motion results for each of the three proposed volume distribution functions will now be

presented. Results include wave speed and amplitude attenuation. Depending upon which volume
distribution function is used in the modeling, a wide variety of predicted output can result by varying
particular constitutive, microstructural, and other input parameters. The constitutive parameters in the theory
are ct., a., A. and A., while the microstructural parameters are v, vX, VXX, Va, Vb, 1, and B, and the input
Srameter would be the initial wave amplitude ao. In principle, the constitutive parameters would be a

function of the microstructural parameters as demonstrated in Eq. (6). However, explicit relationships for
these parameters have not yet been determined. Therefore, only constant values will be used for these various
parameters. C-/C '

For the periodic distribution model, the microstructural parameters are the average porysity va and the
characteristic length 1. Specific constitutive pameters which /seem to give reasonlble results for
geomechanics materials are a. = -450 lb, % =Q-Mb, Ac = 3 x 05lb/in2 and A, = - C11( lb/in.

Figure 2 illustrates the effect of porosity on the wave speed versus propagation depth. Three different
values of va are shown using a characteristic length of I = 0.1 in. As expected, the average wave speed
decreases with increasing porosity. Figure 3 shows the effect of the characteristic length on the wave speed,
and it is seen that the wave speed will increase with I. This result is apparently related to the fact that., with
an increase in 1, the wave will sc. fewer microstructural changes per unit length of travel and will thus suffer
fewer scatterings. For the periodic microstructural model, the average wave speed will oscillate during the
first few grains and will then be essentially constant thereafter.

Amplitude behavior is illustrated in Fig. 4 for various cases of microstructure and initial input
acceleration amplitude. Figure 4a shows the amplitude behavior for three different initial amplitudes,
a, = 5 x 103, 1 x 104, and 5 x 104 in/s 2 . Clearly, the expected result can be seen in that higher initial
amplitudes decay faster than the lower amplitude waves. Comparing Figs. 4a and 4b indicates the effect of
porosity on the amplitude attenuation. It is observed that the attenuation rate is dependent upon va and as va
decreases (i.e., increasing porosity) the rate of attenuation increases. This result is also consistent with the
variation in wave speed with va shown in Fig. 2. Comparing Figs. 4b and 4c demonstrates the effect of I on
amplitude attenuation. These figoes indicate that larger values of I result in less attenuation, which is
consistent with the previous obseryv"on regarding the variation of wave speed with 1.

For the exponential volume distribution model the constitutive parameters were chosen as a', = -8 xA7i
lb, atc = 4.8 x 108 lb, AF = 3 x 105 lb/in 2 and A. = -1.0 lb/in2 . This model contains the microstructural
parameters of the free surface porosity vb and the depth rate of consolidation B. As before, the input
parameter is the initial amplitude ao. Figures 5 and 6 show typical results concerning the effects of these
parameters on the wave propagation variables. Figure 5 shows the effect of vb on the average wave speed.
For this case, the wave speed increases with depth due to the overall decrease in porosity with depth. Figure
6 shows the effect of Vb and the initial amplitude on wave attenuation. These results give trends similar to
the previous observations for the periodic distribution function: P higher initial amplitude waves
attenuate faster and the attenuation rate increases with porosity. ) .e-

For the combined periodic-exponential distribution model, the chosen constitutive parameters that were
used are a. = 73 x 105 lb, arr = 5 x 108 lb, A, = 3 x 105 lb/in2 and Act = -750 lb/in 2 . This model
contains a ur microstructural parameters va, Vb, 1, and B. These, along with the initial amplitude a,
provid econsiderable parameter variations. Only a portion of the possible parametric variations will be
presented, and these are shown in Figs. 7 and 8. Figure 7 shows the effect of vb on the average wave speed
illustrating again a slower propagational speed for more porous media. Figure 8 shows the effect of the
initial amplitude and porosity on wave attenuation. These results indicate the same trends as observed for the
preceding cases, namely an increase in attenuation with initial acceleration and porosity.

5. SUMMARY AND CONCLUSIONS

This paper has presented a wave propagation study based upon a distributed body model of geological
media. A one-dimensional theory has been developed for explosive transient loadings using singular surface
wave theory. General formulas for the wave speed and amplitude attenuation were taken from the previous
work of Nunziato et al [30-321. Specific forms for the volume distribution were constructed to model
geological materials, and these were incorporated into the general wave theory. A general computer code was
written to calculate specific results from the model for a variety of constitutive and microstructural model
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parameters. Three specific forms of the volume distribution function included a periodic model giving a
repeatable microstructure with distance, an exponential form with a depth dependent effect corresponding to

- ititu over-burden, and a combined periodic-exponential form yielding both repeatable and depth dependent
microstructure.

In regard to wave speed, since the local speed through each granule is difficult to observe, the average
wave speed was computed by the code. It should be pointed out that the actual wave speed will vary in an
oscillatory manner for volume distributions which have a periodic nature. It is observed that for the periodic
and periodic-exponential distribution cases, the average wave speed will oscillate through the first couple of
periodic longths (barely discernable from Figs. 2, 3, and 7) and then will gradually approach an asymptotic
value. As expectedjesults indicate that porosity generally decreases the wave speed. However, it is more
interesting to note that other microstructural parameters also have a major effect. For example, results for
the periodic volume distribution indicate that the periodic length 1, plays the role of decreasing the wave
speed as I gets smaller.

Although the theory is capable of predicting both growth or decay of wave amplitude, for the cases
considered here the wave amplitude was found to decrease with propagational distance. The attenuation rate
was found to be higher in more porous media, and initially higher amplitude waves decayed faster than waves
with a lower initial amplitude.

The work described here deals solely with deterministic analyses. Probabilistic studies [34] have been
conducted within the framework of the distributed body theory. Such work investigated the effects of
allowing the characteristic length 1, and the average porosity va, for the periodic model, to be random
variables, i.e. to have an average value and a standard deviation. Output probabilistic results were given for
the expected value and for plus or minus one standard deviation bounds.

The theoretical results of this work appear to generally match both qualitatively and quantitatively data
on wave propagation in soils. Unfortunately, experimental data on wave propagation through structured
geological media with precisely known microstructure was not available to the authors. Consequently,
comparisons with data could not be made at the present time. Current work is under way at the University of
Rhode Island to collect such data, and future comparisons will be made.
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ABSTRACT

A computational and experimental study has been conducted on the
propagation of mechanical waves in granular materials. The computational
study employed the use of the distinct element method whereby the motion
of each granule in the material is modeled by rigid-body dynamics
assuming each particle interaction has a particular stiffness and damping.
The experimental investigation has used the method of dynamic
photoelasticity to collect photographic data which provide information on
the wave speeds, inter-granular contact loadings, and wave spreading
characteristics. The experimental results provide special dynamic material
constants necessary for the computational modeling, and they also provide
data for comparison purposes. Results from both the computational and
experimental studies indicate that local microstructure plays an important
role in the wave propagation through such materials.

INTRODUCTION

A granular medium can be characterized as a collection of distinct
particles which can displace independently from one another and interact
only through contact mechanisms. Because of this discrete character, the
mechanical behavior of such materials under static and dynamic loading
conditions is very difficult to model. It is now generally accepted that the
local microstructure or fabric, i.e. the local geometrical arrangement of
particles, plays a dominant role in the transmission of mechanical loadings
through these materials. Porosity, which provides only an average
estimate of microstructure, is by itself not sufficient to accurately predict
the behavior of granular materials. Our aim here is to understand the
dynamic behavior of this type of material when it is subjected to
explosive loadings of short duration which produce propagating stress
waves. The discrete medium will act as a structured wave guide,
providing selective paths for the waves to propagate. Amplitude
attenuation will then depend strongly upon the selected path of
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propagation, and thus the wave propagation is linked to the medium
microstructure.

A large volume of reported research on the mechanical behavior of
granular materials exists in the literature. Constitutive models have
employed for example: elastic/plastic contact theories [1-3], fabric tensors
[4], distributed body models [5,6], endochronic theories [7], pore collapse
mechanisms [8], and probabilistic approaches [9,10]. In addition, a
numerical scheme developed by Cundall and Strack [11], called the
distinct element method has also been used to simulate granular media by
modeling the behavior of large assemblies of circular disks. In this
method, the contact forces and displacements of an assembly of disks are
determined through a series of calculations tracing the movements of each
of the individual disks. The method is based on the use of an explicit
numerical scheme in which the interaction of the granules is modeled
using rigid-body dynamics assuming each particle interaction has a
particular stiffness and damping. Several successful applications of this
method have been reported [12,13], and based upon these, this method has
been developed and applied to the wave propagation problems to be
reported here.

For applications to wave propagation, the movements of each of the
disks is a result of the propagation through the medium of disturbances
originating at the loading points. Consequently, the wave speed and
amplitude attenuation will be a function of the physical properties of the
discrete medium, i.e. the microstructure. Through the use of base line
experimental data from dynamic photomechanics studies on a simple
straight chain of disks, the required dynamic stiffness and damping
parameters were determined. These values were then used to predict the
wave motion in other more complex geometries.

DISTINCT ELEMENT MODELING

The distinct element approach uses Newtonian rigid-body mechanics to
model the translational and rotational motion of each disk in a model
assembly. In the numerical routine, time steps are taken over which
velocities and accelerations are assumed to be constant. In addition, it is
also assumed that during this time step, disturbances cannot propagate
from any disk further than its immediate neighbors. This then makes the
method explicit, and therefore at all times the resultant forces on any disk
are determined solely by its interactions with the disks it is in contact.

Consider the case of two disks in contact as shown in Figure 1. The
position, velocity, acceleration, angular velocity, angular acceleration,
radius, and mass of disk I are labeled as: r, v1, a1, (o, c1, R1, and m,,
with like notation for disk 2. The unit normal vector n and unit
tangential vector t are defined as shown.
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rR 2

Figure 1. Schematic of Disk Interaction

The normal component of relative contact velocity between the two
disks is given by

v. = (v - v2)-n (1)

while the tangential relative velocity is

v, = (v, - v.)-t - (o,R. + o2R2) . (2)

Using a finite difference scheme with constant properties over the
time interval, the relative velocities may be integrated with respect to time
to yield the incremental relative normal and tangential displacements, i.e.

Ax. = v.At = [(v - v2).n]At
(3)

Ax, = vAt = [(v, - v)-t - (coR, + o2R2)]At.

In a similar way, the absolute velocity may be computed from the
acceleration using the relation

Av = a At. (4)

These relative displacement increments are to be used with a
particular contact force-displacement law in order to calculate the forces
on each disk in the assembly. Through allowable deformations, the disks
in contact are permitted to overlap with one another such that the distance
between their centers will become less than (R, + R). While the general
technique could include a complex nonlinear contact law, the present study
incorporates a simple linear relation of the form

AF. = K.Ax
(5)

AF, = K1 Ax,
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where K, and I, are the normal and tangential contact stiffnesses. At
each time step, the force increments AF. and AF, are added to the sum of
the total forces F., and F, on each disk from previous time steps, i.e.

(F, (F,) + AF.
(6)

(FJ, (F)N. + AF,

where the indices N and N-I refer to times tN and tN.,, and At = tNt.. A
Coulomb-type friction law is incorporated to deal with the tangential
loading. This law is defined by

(F,. I F. + c (7)

where g± is the coefficient of friction and c is the cohesion between the
two disks. If the absolute value of (F,)N found from equation (6)2 is
larger than (Fj,, than (F)N is set equal to (F)..

The motion of each disk is calculated using Newton's second law of
motion. Since the behavior of real granular media involves energy
dissipation, forms of damping should be incorporated into the model.
Two forms of such damping are therefore introduced. A local damping
proportional to the relative disk velocities, and a global damping
proportional to the absolute disk velocities will be included in the force
balance laws. Applying Newton's law to disk 1, therefore yields

F, - CL.v.ln - C,v,t - Cv 1 = m1a,
(8)

M, - C,,vtR, - Ca{D) = I1a1 ,

where F and M are the resultant force and moment on the disk, C, and
C, are the local damping coefficients for the normal and tangential
directions, C. is the global damping coefficient, and I is the moment of
inertia of the disk. Equations (8) can thus be solved for the accelerations
a, and a, over each time increment. With the accelerations known, the
velocities follow from application of equation (4) and the relative
displacements can then be computed from equation (3). This leads to new
values of the forces through (5) for the next time increment, and the cycle
is repeated again for each disk. In this manner, large assemblies of disks
can be analyzed in a reasonable amount of computer time. Values of the
stiffness and damping parameters appropriate for a given material are
difficult to measure. For the static case, the stiffness properties may be
computed from Hertz theory or from other elasticity analyses. However,
for the dynamic case involving loadings of short duration, estimates of the
model parameters are extremely difficult to make. It is here that
experimental dynamic photoelasticity can be used.
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EXPERIMENTAL TECHNIQUE

The optical technique of dynamic photoelasticity along with high speed
photography is very well suited to study wave propagation in different
assemblies of granular media. Details on the wave speed, inter-granular
contact forces, and wave spreading phenomena may all be determined
through this experimental method. The granular medium was simulated
by assemblies of one inch diameter discs which were fabricated from a
brittle polyester material, Homalite 100. The dynamic loading was
achieved by exploding a small charge of PETN in a specially designed
charge holder directly on top of one of the grains. Experimental granular
assemblies were placed in the optical bench of a high speed multiple spark
gap camera. The details of this camera are given in [14]. This high
speed photographic system operates as a series of high intensity, extremely
short duration pulses of light and provides 20 photoelastic images at
discrete times during the dynamic event. Framing rates of up to 106
frames per second are attainable using this photographic stem. Typical
photographs obtained during the experiments are shown in Figures 2 and
3. These photographs show the isochromatic fringes at different tines as
the stress wave passes through the granular assemblies. Figure 2
illustrates the propagation of a stress wave down a single straight chain of
disks, while Figure 3 shows the dynamic fringe patterns associated with
waves moving through three different two-dimensional assemblies.
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Figure 2. Photoelastic Fringe Patterns of the Single Disk Chain
for a Sequence of Times
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The isochromatic fringes obtained during the experiments are lines of
constant maximum shear stress. These fringes are related to the stress
field by the stress optic law

o1 - 52 = Nf,/h, (9)

where, a, and CF2 are the principal stresses, N is the fringe order, f, is the
material fringe value, and h is the thickness of the model.

Shukla and Nigam [15] have shown that eqration (9) when
combined with the Hertz contact stress equations can be used to analyze
the stress field in the vicinity of the contacts shown in the Figures 2 and
3. This analysis yields both the normal and the tangential contact forces
as a function of time. Some particular values of the peak contact forces
obtained in these g,.ometries are shown in Figures 4 and 5, and these are
to be used in conjunction with the numerical study.

RESULTS AND CONCLUSIONS

In order to apply the distinct element method to various granular
assemblies, values for the model parameters (stiffness and damping
coefficients) must be determined. For the dynamic case, we expect that
the contact stiffnesses K. and IK, will be difficult to calculate from simple
static Hertz contact theory. In addition, values for the damping would
also be difficult to calculate from say elastodynamic theory. Hence, the
dynamic photoelastic experiments were used to provide this information.
Experiments were performed on a single straight chain of disks (see
Figure 2), and these experiments were considered to be our calibration
tests. Appropriate values for these stiffness and damping coefficients were
thus determined to match the data from the calibration experiments.
These values were then retained in the model to predict the wave motion
in other more complicated geometries. For the cases to be reported here
the contact stiffnesses were taken as K. = Kt = 6.4 x 106 N/m, and the
local normal damping coefficient was C= 32 N. s/m. Global damping
was not included, and tangential contact loading was set to zero. The
input loading was chosen to be a triangular profile of 60.s duration, and
the time step was taken as At = 21.s.

Results from the distinct element modeling are shown in Figures 4
and 5 for four different assemblies, i.e. the single straight chain, body-
centered cubic, hexagonal close packing, and a random packing.
Numerical predictions of the maximum inter-granular contact loadings
(normalized with respect to the input loading) are shown at various
contacts in the assemblies. For comparison, the corresponding
experimental values are also given in parentheses. As menti ned, the
straight chain experiment was actually used to determine the model
parameters. For the body centered cubic geometry shown in Figure 4,
experiments indicate that for input excitation directed along a column
chain, the resulting wave motion will occur only along that chain.
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Figure 4. Distinct Element Predictions and Comparisons

This was also predicted numerically as seen from Figure 4. On the other
hand, the hexagonal close packing geometry allows wave motion in many
different chains and paths (this can be seen from the experiments shown
in Figure 3). Some of the numerical predictions are compared with
experiments for this geometry for two principal chains as shown in Figure
5. The random model material offers the most complex wave
transmission phenomena. This model contains some grains with noticeable
tangential inter-granular contact loadings. However, as seen in Figure 5,
our frictionless numerical simulation provides contact values which are
generally comparable to the experimental data.

Results of this study illustrate the dependence of microstructure on
the wave propagation. In order to describe local microstructure or fabric,
it is convenient to define the term branch vectors which are drawn from
the mass centers of adjacent disks. The angle between neighboring branch
vectors may be denoted as a branch angle. It is therefore clear from
Figures 4 and 5 that the inter-granular contact force, which is a measure
of the wave amplitude, behaves quite differently when the wave
propagates through media with large changes in the branch vector
distribution. Further numerical and experimental studies are underway in
an attempt to model additional dynamic phenomena in granular media.
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Abstract

Theoretical and experimental studies have been conducted on the dynamic response
of granular materials containing local discontinuities of voids and inhomogeneous
inclusions. The granular medium was simulated by a specific assembly of circular disks
which were subjected to explosive loadings of short duration. Voids were created by
removing particular disks from the assembly, while inclusions were constructed by
replacing certain disks with ones of a higher impedance material. The computational
simulation was accomplished through the use of the distinct element method in which the
intergranular contact forces and displacements of the assembly disks are determined through
a series of calculations tracing the movements of each of the individual disks. The
experimental study employed the use of photoelasticity in conjunction with high speed
photography to collect photographic data of the propagation of waves in transparent
assemblies of model granular media. Comparisons were made between the computational
results and the experimental data for the local intergranular contact forces around each void
or inclusion. Both voids and inclusions produce local wave scattering through various
reflection mechanisms, and the results seem to indicate that the inclusions produced higher
local wave attenuation.

1. Introduction

Granular media can be described as a collection of distinct particles which can
displace independently from one another and which interact only through contact
mechanisms. This type of media transmits loadings through discrete paths, and therefore
the mechanical behavior of such materials under static and dynamic loading conditions is
very complex and difficult to model. It is now generally accepted that the local
microstructure or fabric, i.e. the local geometrical arrangement of particles, plays a
dominant role in the transmission of mechanical loadings through these materials. The
material porosity provides only an average estimate of microstructure, and by itself it is not
sufficient to accurately predict the behavior of granular materials. Our general aim here is
to understand the dynamic behavior of this type of material when it is subjected to
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explosive loadings of short duration which produce propagating stress waves. The discrete
medium will act as a structured wave guide,. providing selective paths for the waves to
propagate. Amplitude attenuation will then depend strongly upon the selected path of
propagation, and thus the wave propagation is strongly linked to the medium
microstructure.

A considerable amount of research on the mechanical behavior of granular materials
has been reported in the literature. Constitutive models have employed for example:
elastic/plastic contact theories (Deresiewicz, 1959, Walton, 1987, and Petrakis and Dobry,
1986), fabric tensors (Nemat-Nasser, 1983), distributed body models (Goodman and Cowin,
1972), endochronic theories (Bazant, 1983), pore collapse mechanisms (Carroll and Holt,
1972), and probabilistic approaches (Endley and Peyrot, 1977, and Fu, 1977). The concept
of modeling granular media as an array of elastic disks or spheres lead to the initial
attempts at predicting wave propagation phenomena. Early wave propagation studies
include lida (1939), Takahashi and Sato (1949), Hughes and Cross (1951), Hughes and
Kelly (1952), Gassman (1951), Brandt (1955), and Duffy and Mindlin (1957). This initial
work investigated the propagation velocity as a function of confining pressure, particle size
and geometrical packing. This particular modeling concept lead to work in determining the
elastic constants of particular granular assemblies, see for example, Hendron (1963),
Petrakis and Dobry (1986), and Walton (1987). In addition, wave propagation studies for
granular and porous media by Nunziato et.a. (1978) and Sadd and Hossain (1989) have
employed the distributed body theory. Experimental studies of this problem employing
the method of dynamic photoelasticity have been reported by Shukla et.al.
(1985,1987,1988). In this method, high speed photography was used to collect
photographic data of wave propagation in transparent model materials composed of
assemblies of birefringent disks.

A numerical scheme developed by Cundall and Strack (1979), called the distinct
element method has also been used to simulate granular media by modeling the behavior of
large assemblies of circular disks. In this method, the contact forces and displacements of
an assembly of disks are determined through a series of calculations tracing the movements
of each of the individual disks. The metbh d is based on the use of an explicit numerical
scheme in which the interaction of the granules is modeled using rigid-body dynamics
assuming each particle interaction has a particular stiffness and damping. For applications
to wave propagation, the movements of each of the disks is a result of the propagation
through the medium of disturbances originating at the loading points. Consequently, the
wave speed and amplitude attenuation (intergranular contact force) will be a function of the
physical properties of the discrete medium, i.e. the microstructure. Several successful
applications of this method have been reported (Thorton and Barnes, 1986, Bathurst and
Rothenburg, 1988, and Sadd et.al., 1989), and based upon these, this method has been
developed and applied to the wave propagation problems to be reported here.

The present study focuses on a specific aspect of wave propagation in granular
materials, namely the effects of voids and inclusions. It is well known that actual granular
media contains both voids and heterogeneous inclusions. These quantities further
complicate an already complex microstructural material. Most past studies on wave
propagation in these materials have been limited to looking at aggregate assemblies with
uniform packing geometries. Our focus here is to investigate the local effects produced by
voids and inclusions in regular arrays of circular disks, and of primary concern, is the
wave scattering in the vicinity of the microstructural defect. The wave propagation
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phenomena is to be studied through the determination of the intergranular contact force
distribution in the neighborhood of a particular void or inclusion. This problem has been
studied using the computational method of distinct elements, and using the experimental
technique of dynamic photoelasticity.

2. Distinct Element Method

The distinct element method is a simplified modeling concept which uses Newtonian
rigid-body mechanics to model the translational and rotational motion of each disk in a
model assembly. The technique establishes a discretized time stepping numerical routine,
in which granule velocities and accelerations are assumed to be constant over each time
interval. It is also assumed that during each time step, disturbances cannot propagate from
any disk further than its immediate neighbors. Under these assumptions, the method
becomes explicit, and therefore at any time increment the resultant forces on any disk are
determined solely by its interactions with the disks it is in contact.

In order to describe the method, consider the case of two disks in contact as shown
in Figure 1. The position, velocity, acceleration, angular velocity, angular acceleration,
radius, and mass of disk 1 are labeled as: r,, vj, a1, wl, a1, R,, and rn, with like notation
for disk 2. The unit normal vector n and unit tangential vector t are defined as shown.

The normal component of relative contact velocity between the two disks is given
by

V, = (V1 - v2)-n (2.1)

while the tangential relative velocity is

v, = (v, - v).t - (a,R1 + w2R 2) . (2.2)

Using a finite difference scheme with constant properties over the time interval, the
relative velocities may be integrated with respect to time to yield the incremental relative
normal and tangential displacements, i.e.

Ax. = v.At = [(v1 - v2)-n]At
Ax, = vAt = [(vl - vD-t - ((i)1R + o2R2)]At. (2.3)

In a similar way, the absolute velocity may be computed from the acceleration using the
relation

Av = a At. (2.4)

These relative displacement increments are to be used with a particular contact
force-displacement law in order to calculate the forces on each disk in the assembly.
Through allowable deformations, the disks in contact are permitted to overlap with one
another such that the distance between their centers will become less than (RI + R2).
While the general technique could include a complex nonlinear contact law, the present
study incorporates a simple linear relation of the form
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AF.=K.Ax.
AF, = KAx, (2.5)

where K. and K, are the normal and tangential contact stiffnesses. At each time step, the
force increments AF. and AF, are added to the sum of the total forces F, and F, on each
disk from previous time steps, i.e.

(F=)N (F., + AF.,
(F)N (FN.i + AF, , (2.6)

where the indices N and N-1 refer to times tN and tN.1, and At = tN-tN.. A Coulomb-type

friction law is incorporated to deal with the tangential loading. This law is defined by

(F ). = L F. + c , (2.7)

where p. is the coefficient of friction and c is the cohesion between the two disks. If the
absolute value of (F)N found from equation (2.6)2 is larger than (F),, then (F, is set
equal to (FjO..

Using Newton's second law of motion, the acceleration of each disk at each time
interval can be determined. Now since the behavior of real granular media involves energy
dissipation, the modeling introduces damping mechanisms. Two forms of such damping
are therefore introduced. A local damping proportional to the relative disk velocities, and a
global damping proportional to the absolute disk velocities will be included in the force
balance laws. Applying Newton's law to disk 1, therefore yields

F, - C ,v,,n - C,,vlt - C9v1 = m1a
M, - C,,v1Rl - CSco 1 = Ioz , (2.8)

where F and M are the resultant force and moment on the disk, C,. and C, are the local
damping coefficients for the normal and tangential directions, C1 is the global damping
coefficient, and I, is the moment of inertia of the disk. Equations (2.8) can thus be solved
for the accelerations a, and a, over each time increment. With the accelerations known,
the velocities follow from application of equation (2.4) and the relative displacements can
then be computed from equation (2.3). This leads to new values of the forces through
(2.5) for the next time increment, and the cycle is repeated again for each disk. In this
manner, large assemblies of disks can be analyzed in a reasonable amount of computer
time. Values of the stiffness and damping parameters appropriate for a given material are
difficult to measure. For the static case, the stiffness properties may be computed from
Hertz theory or from other elasticity analyses. However, for the dynamic case involving
loadings of short duration, estimates of the model parameters are difficult to make. In
order to determine estimates of these model parameters, experimental results from dynamic
photoelasticity were employed. Data from simple calibration tests on a single chain of
disks were used to determine values for the contact stiffness and damping for the disk
assemblies under study. For the stiffness parameter, the dynamic stiffness was written as

K,, = (x K,,('), (2.9)
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where K. ' is the static contact stiffness from Hertz theory given by
K _ ithE1E2

- 2(E1+ E) (2.10)

and a is a dynamic stiffness coefficient which is to be determined by the experiments, h is
the disk thickness, and E1 and E2 are the elastic modulli of the two disks in contact. The
cx coefficient may be thought of as an adjustment parameter, less than unity, which
accounts for the fact that the entire disk will not deform during the dynamic event.

3. Photomechanics Studies

A series of dynamic photoelastic experiments were conducted to provide
experimental information on the effect of voids and inclusions on the wave propagation
phenomena. For the experimental study, the granular medium was simulated with
assemblies of polymeric birefringent disks of Homalite 100, 25.4mm in diameter and
6.25mm thick. In all the experiments reported here, the disks were assembled in an
hexagonal close packing geometry as shown in Figure 2. Voids in the assembly were
created by removing disks from different locations, while inclusions were created by
replacing particular disks with ones of a different material (steel). Dynamic loading was
achieved by detonating a small charge of PETN in a specially designed charge holder,
which was mounted at the top-centerline of the model assemblies. The experimental
models were placed in the optical bench of a high speed photographic system. This high
speed photographic system operated as a series of high intensity, extremely short duration
pulses of light and provided 20 photoelastic images at discrete times during the dynamic
event. Framing rates of up to 106 frames per second are achievable, and this allows studies
of wave propagation to be made, see Riley and Dally (1969).

A typical sequence of four images from each experiment are shown in Figures 2
through 6. The photographic data shows the isochromatic fringe patterns at different times
as the stress wave propagates through the model assemblies. The wave propagation history
can thus be clearly seen from a sequence of such photographs. Figure 2 illustrates the
wave patterns for the assembly with no voids or inclusions. Figures 3 and 4 show the
wave motion for the cases of single and multiple voids, while Figures 5 and 6 illustrate the
cases with inclusions of higher density and stiffness. Inspection of the photographs reveals
that the wave length X, of the loading pulse is much larger than the disc diameter D; in
fact X--4D. Furthermore, in most cases the fringe pattern around the contact points are
symmetric on either side of the contact points and are similar to the fringes obtained under
static compression. Both these features indicated that around the contact zone, quasi static
loading was present during the wave propagation event. Thus Hertz theory can be used to
estimate the stress field in the vicinity of the contacts.

The isochromatic fringes photographed during the experiments are lines of constant
maximum shear stress, and are related to the stress field by the stress optic law

a1 - ; 2 = Nfo/h (3.1)

where ay and 0Y2 are the principal stresses, N is the fringe order, fo is the material fringe
value, and h is the model thickness. Using relation (3.1) along with the Hertz contact
stress equations, Shukla and Nigam (1985) have developed a scheme to compute the quasi-
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static stress field in the vicinity of the contacts between each grain. These contact stresses
may then be integrated along the contact length to determine the normal and tangential
contact forces transmitted between the disks at various times during the dynamic process.
Thus the intergranular contact loading, which is related to the wave amplitude, can be
experimentally computed. These experimental results can then be compared with the
theory, and they can also be used to determine necessary material model parameters (e.g.
the contact stiffness and damping) in order to use the distinct element method.

4. Results and Comparisons

Specific results of the distinct element modeling along with comparisons to the
experimental data will now be given for particular granular assemblies containing voids and
inclusions. The basic assembly geometry is a hexagonal close packing arrangement shown
in Figure 7. The theoretical model used an input loading of triangular time dependence
with a 601.ts duration to model the explosive loading from the experiments. The local
stiffness and damping parameters K., K, C,, and C, needed in the distinct element model
were determined from experimental tests conducted on straight single chains of disks.
fhcsc calibration experiments provided specific values for the wave speed and amplitude
attenuation for a very simple geometry. The model parameters were thus chosen to
produce the best match to the calibration data, and these values were then retained in the
model to be used for calculations of more complicated geometry. The contact stiffnesses
for Homalite-to-Homalite contacts were taken as K. = K, = 6.4 x 106 N/m (a = 0.27), and
the local normal damping coefficient was C, = 32 Ns/m. Global damping was not
included , and tangential contact loading was set to zero. The time stepping increment was
taken to be 24.ts for all cases studied, and this was felt to be appropriate to calculate the
essential features of the dynamic event.

Results from the distinct element technique are shown in Figure 7 for the basic
granular media with no voids or inclusions. Numerical predictions of the maximum inter-
granular contact loadings (normalized with respect to the input loading) are shown at
various contacts in the assembly. The corresponding experimental values are also given in
parentheses. The contact loading values are symmetric about the assemblies' vertical
centerline, and the results indicate the rapid attenuation which occurs along various chains
or paths in the assembly. Comparison of theoretical with experimental contact loadings
indicate that they differ by an average amount of 25%. Experimental determination of the
wave speed was accomplished from the known position of the fringe patterns in the
photographs. These results indicated that the leading wave front in the Homalite
assemblies, propagates at approximately 995 m/s, which is about 50% of the P-wave speed
in the virgin disk material. Wave speed predictions from the distinct element model
matched well (within 10%) to these measured values.

Figures 8 and 9 illustrate the case of a granular media with voids present. Figure 8
contains a single void, while Figure 9 contains a series of voids down the vertical
centerline of the assembly. The presence of a void produces significant local wave
scattering and attenuation, especially along the main vertical chain down the centerline of
the assembly. Local inter-granular contact forces become elevated near the void; however,
at contacts remote from the void, the loading values are similar in magnitude (with the
exception of points on the vertical centerline) to those in Figure 7. Computational and
experimental contact loads compare to within an average difference of 15% for the
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assemblies with voids.
The cases of granular media with inclusions of different material are shown in

Figures 10 and 11. This situation is attempting to model the local effects of heterogeneity
in a granular medium. Figure 10 illustrates the case of a single inclusion, and Figure 11
contains the case of several inclusions down the vertical centerline of the assembly. As
mentioned the inclusion is simply a disk of a different material, and in this case the
inclusion material was steel, which in comparison to the granular material (Homalite 100)
has a much higher stiffness and density. The contact stiffness between the Homalite and
steel disks was calculated using relations (2.9) and (2.10) retaining the same value of CL.
The local damping parameter C,, was kept the same for this case, since there was only a
small number of inclusions present.

There will be an impedance mismatch at the contacts of the Homalite and steel, and
thus there will be a sizeable difference between the reflection and transmission phenomena
at these contacts in comparison to those of the rest of the medium. For example, at point
C in Figure 10, the wave is attempting to propagate from a relatively soft material into a
stiff material. Consequently, a sizeable reflection occurs at this contact producing an
upward traveling wave and a large contact force. Very little wave motion is transmitted
into the inclusion, and thus the inclusion acts to block the wave motion along the vertical
disk chain. For the inclusion cases, the average difference between theoretical predictions
and experimental data was 20-30%.

5. Conclusions

The methods of distinct elements and dynamic photomechanics have been used to
study the effects of voids and heterogeneous inclusions on the wave propagation in
granular materials. The granular medium was simulated by a specific assembly of circular
disks arranged in an hexagonal close packing geometry. The voids were created by
removing particular disks, while inclusions were constructed by replacing particular disks
with ones of a higher modulus material. Comparisons were made between the
computational results and the experimental data for the local intergranular contact forces
around each void or inclusion. Although comparisons produced some differences as high
as 30%, it is felt that since the experimental data itself contains scatter of approximately
10%, the computational scheme does provide reasonable predictions. Improvements of the
modeling procedures could be accomplished by incorporating a more sophisticated dynamic
contact law.

Comparing the results, it is apparent that both the voids and inclusions cause local
wave scattering. In comparison to the case with no voids or inclusions, elevated contact
forces occur near the discontinuity, and along particular paths dictated by the local
microstructure, rapid wave amplitude attenuation occurs. A void produces wave scattering
through free-surface reflection from the empty volume, whereas the inclusion causes
sizeable reflections from the material of higher impedance. Comparing the path AB in
Figures 8 and 10, it appears that the inclusion produces higher attenuation than the void.
Current work continues on these studies, and investigations are underway on wave
propagation in granular materials with additional and more complex microstructural
features.
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Use of Load Transfer Coefficients to Predict Dynamic
Loads in Granular Assemblies
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C. Y. Zhu, A. Shukla and M. H. Sadd
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University of Rhode Island, Kingston, RI, 02881

ABSTRACT sintered by either static or dynamic compression of powders. Such
sintering processes are characterized by load transfer and flow of

An experimental-numerical hybrid technique has been particles in a granular media. In addition, granular materials are

developed to predict the intergranular contact load transfer in excellent shock wave attenuators and as such have applications as

granular media subjected to explosiveTloading. he granular media diverse as transport packing materials and shock isolation materials

was simulated by assemblies of circular discs in contact The peak for explosive chambers. A granular medium is composed of a

contact load transfer coefficients, i.e. the ratio of the maximum large number of distinct particles as well as some voids. The

output contact load to the input contact load as a function of the particles can displace independently from one another. The ,oids
contact angle, of a given particle were obtained through controlled may be filled with gas, as in a sample of dry sand, or they may
experimental studies. These coefficients along with the principle be filled with liquids, as in a sample of wet sand. The discrete
of superposition were then used to predict the peak contact loads character of the granular media results in a quite complex behavior
in several deterministic as well as random assemblies of discs. under conditions of dynamic loading.
Although the numerical scheme was rather simple, the predicted The study of granular media from a microstructure poic.: of
resuits compared favorably with the experimental data for several view started many years ago with research modelling gra:nular
different assemblies, media as aggregate assemblies of discs or spheres. Early work by

lida [1), Takahashi and Sato 121, Hughes and Cross [3], Gassman
141 and Brandt [51 employed a norma] granular contact force
concept. while Duffy and Mindlin [61 included tangential forces

NOMENCLATURE as well. This initial work investigated wave propagation velocity
as a function of confining pressure, particle size and aggregate

C Peak contact load transfer coefficient geometry. Important new work has been done by Oda [7], Nemat-
D Diameter of a disc Nasser and Mehrabadi [81, et al. in the development of so-called
f. Material fringe value fabric tensor theories for granular materials. The development of
h Thickness of a disc distributed body theory by Goodman and Cowin 19] has also
N Fringe order proved useful in modelling such materials. Computational work in
P. Input peak contact load modeling large aggregate assemblies of particles has been carried
P, Output peak contact load out by using the distinct element method of Cundall and Strack
6, Contact angle [10], see also Sadd et al. [Ill.
X Wave length With regard to experimental techniques, the method of

,2 o2 Principal stresses photoelasticity provides whole field data during an experiment and
makes it possible to determine the contact load between
neighboring granular particles. Dantu 1121 and Wakabayashi [131,

INTRODUCTION Drescher and de Josselin de Jong 1141, and Durelli and Wu 1151
have employed photoelasticity to study the granular media behavior

Knowledge of wave propagation in granular materials is of under static loading. Shukla et al. [16) [17] [IS] have used
importance in many branches of engineering. These include photoelasticity combined with high speed photography to
powder metallurgy. transducer design, earthquake engineering, soil investigate the wave propagation phenomena due to explosive
mechanics etc. Granular powders are of great importance to the loading of an assembly of discs. Experimental methods provide
forming of many solid materials. These materials for one reason sufficient information to determine wave speeds, dynamic contact
or another can not be extruded, rolled or drawn, molded and fired, loads, etc. in different kinds of granular packings under various
grown as crystals or cast from a melt, and so are frequently loading conditions.

Dl



An experimental-numerical hybrid technique for analyzing the delay time after igniting the explosive. The high spero
d,,na.znc load transfer in a granular medium is discussed in this photographic system operated as a series of high intensitv
paper. In the experiments, dynamic loading was achieved by extremely short duration pulses of light and provided 2t
detonating a small L.narge of PETN in a specially designed charge isochromatic fringe images at discrete times during the dynamic
holder. which was mounted at the top of the experimental model, event.
High speed photography and dynamic photoelasticity were used A careful inspection of the photographs obtained from the
to experimentally determine the peak contact loads between all experiments revealed that the wave length, ?.. of the loading pulse
the particles. The granular medium was simulated by assemblies was much larger than the disc diameter D, in fact X-4D.
of circular discs in various packing geometries as shown in Fig.l. Furthermore, in most cases the fringe patterns around the contact
The microstructure of the granular medium can be characterized points are symmetric on either side of the contact points and
by branch vectors drawn from the mass centers of adjacent discs similar to the fringes obtained under static compression. Both
as shown in Fig. 2. The angle 8, as shown in Fig. 2, is drawn these features indicate that around the contact zone, quasi-static
between any two neighboring branch vectors and is denoted as loading was present during the wave propagation event. Thus
the contact angle. Initially a series of calibration experiments of Hertz contact stress theory can be used to estimate the stress field
controlled microstructure were conducted in which the contact in the vicinity of the contact.
angles between the granules were systematically varied. The data The isochromatic fringes photographed during the experiments
obtained from each experiment was analyzed to get a load transfer are lines of constant maximum shear stress, and are related to th,
coeffi-;ent. i.e a ratio of the maximum output contact load to the stress field by the stress optic law
input contact load for a given disc. This load transfer coefficient
was obtained for several contact angles and number of contacts 0, - o, = Nfo / h (I)
per disc. With various load transfer coefficients determined, a
numerical scheme was developed using the experimental data and where a, and a2 are the principal stresses, N is the fringe orde,
based on the principle of superposition. Predictions were made of fo is the material fringe value, and h is the model thickness
the intergranular contact loadings for several model assemblies In equation (I), a, and a, are substituted from Hertz contact
with different microstructure as shown in Fig. I. Numerical stress field equations, involving unknowns of contact length b and
predictions were compared with experimental data for these friction factor 3. This equation was solved using an
models. Although the numerical scheme is very simple, the overdeterministic method developed by Shukla and Nigam [20] to
predicted results compared fairly well with the photoelastic accurately determine the contact length and friction factor from
experimental data. the full field photoelastic fringe patterns. These obtained values

were substituted in the Hertz stress field equations and the contarl
stresses were numerically integrated along the contact length w.

DETERMINATION OF THE obtain the normal and tangential contact loads.
Th; peak contact load transfer coefficient C, at contact pointTRANSFER COEFFICIENTS j is a function of the contact angles 0,, 0, and 0, and is defined

as the ratio of the output peak contact load P, to the input peakGranular media transmit mechanical loadings primarily through contact load P, , i.e.
contact mechanisms between adjacent particles. This phenomenon
is quite a complex process and strongly depends on the contact
angle between the particles. For simplicity the granular materials C = C(8, ,2 , 63 = P, / P, j=l, 2, 3
were simulated by assemblies of one inch diameter, 1/4 inch thick For a two contact point model, as shown in Fig. 3c, C, and C,
discs of Homalite 100. The maximum number of the contact are identically equal to zero since contact angles 0 and 0, arc
points for a disc in this study is 6 as shown in the hexagonal 900 while for three contact point model, as shown in Fig. 3d, C,
packing in Fig. 3a. It was shown in our previous work [191 that is identically zero.
a mechanical signal can transfer through a contact point only when The transfer coefficients C, thus obtained from the three groups
the contact angle is less than 900. With respect to the input of experiments were plotted as a function of the contact angles 0,
loading point of a particle, only three contact points namely 1, 2 . -
and 3 as shown in Fig. 3a will have contact angles less than 900. 02 and 0, as shown in Figs. 4 to 6. In Fig. 4, curve I represents
So if the mechanical signal enters a disc through a contact point, the ratio of P,JP, vs. contact angle 02 when both the contact angles
only three contact points will be able to transmit the response. In 0, and 0, are equal to 900. Since both P, and P., are zero, it
this study, all the particle interactions in the granular assembly actually represents the transfer coefficient C, of the two contact
were represented by a general four contact point model as shown point model. The remaining curves in Fig. 4 represent the transfer

i0 900 only two coefficients C, vs. contact angle 02 of the three contact pointin Fig. 3b. For the case of 8, _ 900 and 83 moelwencotctanl 6 ion0anlys lo tcntatou

contact points may transfer dynamic signals, as shown in Fig. 3c, model when contact angle 0, is 90' and 0, is also a constant but

whereas for the case of 0, < 90' and 0 -a 900, dynamic signals less than 900 (it is equal to 300 , 450, 60' and 750 respectively).
can be transmitted through three contact points as shown in Fig. Fig.5 shows the transfer coef . ents C, vs. contact angle 03 for the

3d four contact point model wnen the contact angles 0=0* with
In order to get the peak contact load transfer coefficients, various values of 0,, while Fig. 6 shows the transfer coefficient C,

experiments were conducted on the three groups of models, that vs. contact angle 0 for the same four contact point model. The
is, the two, three and four contact point models shown in Fig 3b, transfer coefficient C, for the four contact point model can be
3c and 3d. In experiments of the two contact point model, contact obtained easily using Figs. 4 and 6 and the property that
angles 0, and 0; were kept at 900. Only contact angle 0, was C,(08,0 2,90 0 ) = C-(02,',,90) and C,(O,,00 ,0,) = C'(8,0,8,).

systematically varied from 00 to 900
, In experiments of the three

contact point model, contact angle 0 was kept at 900, and both
contact angles 0, and 0 were systematically varied. In NUMERICAL METHOD
experiments of the four contact point model, all three contact
angles 0,, 82 and 0, were systematically varied. The experimental The experimentally determined peak contact load transfer
models were placed in the optical bench of a high speed multiple coefficients were used to .onstruct a numerical scheme capable of
spark gap camera. The camera was triggered at some prescribed predicting dynamic load transfer in granular aggregate assemblies
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tedium :or :'ne :eictr. of Fz h. In _ eometr " eai:

.rlice has, .i\ c anw p,,r-, The major load in thi,, asscm,!i!
.,,ran,errd b,, r.,o pr.:,na.N chai s. I and 2. ,hon in F: lb

:, :: e e!'7er' E ,penmenta data ,hoed tnat the tangential contact lods were
M . c:c.,c, o : erv close to zero for the pnmary chains, hence the,,, behaed

Finear. F-e serpni-in of !adin. - similar to the single chain assemblies. In the HCP model there are

,,oAn im F,. u. ed "hen more than one input contact load only two independent contact angles, e. = 0, = 60- and e. = 0-.
,-,ours on a gien disc. with respect to the input load. Thus only two transfer coefficients

Figs. 4 to 6 combined with a Lagc-angian interpolation method were needed for the HCP model. From Figs. 5 and 6, we obtain

have been used to obtain al the necessary transfer c )effictents to the two transfer coefficients, C:60° 00 ,600 ) = CI(600,00 ,600 )= 0.2S.

predict the peak contact loads in granular media. As an example C.0.60°) = 0.75. These coefficients were used to determine

cons:der the transfer coefficients for a four contact point model the peak contact loads throughout the assembly. The comparison

0 =6W. 6,=W) and 0=o5j as shown in Fig. 1b. Since 8. and of numencal and experimental results of the peak contact loads for

8. are equal to the r;o contact angles of curse 4 in Fig. 5. the the HCP model is shown in Fig. 13. The average error of the

:ran,ter coeffc:ent C, can be obt..ined directly and is equal to peak contact loads for this model is 13%. with the average error

t)273. In contrast, the transfer coefficient C. can not be obtained along the center tine ,of the primary chain being only 6%.

directly by using Fig. 5. However it can be obtained by using the Fig. 10 shows a sequence of four photographs obtained as
cur,6es in Fig. 5 combined with the Lagangian interpolation the wave travels in the geometry of Fig. Ic, which will be referred

method and the symmetrical property C,(60'.0'.65') = to as a half hexagonal closed packing (HHCP) granular medium.

C,k65-0c,60°l. Using the values Cd60,0a,60 )  = 0.28, In this geometry a particle has either four or five contact point:.

C,(70,0c,60) = 0.294, C,(80,0 0 ,60') = 0.32 and our Lagrangian It is observed that most of the energy was transferred through a

interpolation method, we get C:(60,0 0.65") = C,(650.0',60) =  vertical column consisting of the HHCP cells under the explosive

0.286. The transfer coefficients C, can be obtained directly from and several horizontal chains as shown in Figs. 10 and 14. The

curve 3 m Fig. 6. C. = C.460,0,65°) = 0.775. peak contact loads were obtained by the same method discussed

After the three transfer coefficients have been obtained, the previously. The comparison of numerical and experimental peak

relevant output peak contact loads for the four contact point model contact loads is shown in Fig. 14. It was found that the average
error for this model is 12%. However the average error along the

can be computed easily. According to the definition of the peak center line of the horizontal chains is only 7.5%.
contact load transfer coefficient, the three output peak contact loads Fig. I I shows a sequence of four photographs as the wave
P, P, and P,, at contact points 1. 2 and 3 are calculated as travels in a random packing granular medium for the geometry c:-
follows. Fig. Id. In this geometry particles have contact points rangin'

from two to six. The fringes in Fig. II reveal a complex nature

P., = C:P of load transfer phenomenon. The energy transfer showed no
P= P. .3 preferential direction in this model. In the former three models.

P., = C P the tangential contact loads, especially along the main path of the

energy transfer, were quite small. However in this random model,
at the contacts near the explosive point, the fringes appeared

RESULTS AND DISCUSSION unsymmetrical with respect to the contact points. So it appears
that sizable tangential loadings existed in this case. Away from

The experimental-numerical hybrid method was used to the explosive point, the fringes showed the tendency to become

predict peak contact loads at every contact point in various models symmetric with respect to the contact points. Again from Figs. 4
of granular media. Four difterent microstructural packings to 6 all the transfer coefficients necessary for the determination of
illustrated in Fig. I were used in this study. Experimental fringe the peak contact loads in the random packing granular medium
patterns obtained for each of the microstructures are shown in Figs. were obtained. The comparison of numerical and experimental
8 to 11. The comparison of the numerical and experimental peak contact loads is shown in Fig. 15, The tangential contact

results are shown in Figs. 12 to 15. loads tend to increase the average error in the peak contact loads.
Fig. 8 shows a sequence of eight photographs obtained as This error was computed to be 19.0% for this model.

the wave travels in a single chain granular medium for the

geometry of Fig. Ia. In this geometry each particle has two

contact points. hence only one transfer coefficient is needed to

model this geometry. This transfer coefficient is obtained from SUMMARY
Fig. 4. C, = C,(900 ,00,900 ) = 0.97. The peak contact loads at A hybrid experimenta-numerical technique has been
each contact point can he determined as follows, developed to predict dynamic contact loadings due to explosive

loading in different assemblies of circular discs. For a known
Pi = CiP, = geometrical arrangement of the discs the technique can predict

.. . contact loads at any point in the assembly for a given input

loading. The method utilizes experimentally generated load

transfer coefficients along with simple linear superposition in

P. = C, IP. space. The results from this scheme are compared with those

obtained experimentally using the method of dynamic

The comparison of numerical and experimental peak contact photoelasticity. In general, the results are in good agreement for

loads in the single chain is shown in Fig. 12. The average peak regular packings of the discs. However for a random packing the

contact load error for this model is computed to be 5%. The agreement is marginal, and this is primarily due to the fact that the

results are in very good agreement because most of the numerical scheme currently does not take into account tangential

assumptions made in our numerical model are satisfied, contact loads which were quite large in random arrangement.

Fig. 9 shows a sequence of four photographs obtained as the Further, the superposition method does not account for any angular
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dependence of whave length of the loading pulse. It was shown in [9] Goodman, M. A. and Cowin, S. C., 'A Continuum Theory
our previous work [191 that the duration of contact loads is for Granular Materials." Arch. Rat. Mech. Anal.. Voi.4-.
dependent on the contact angles. Thus to obtain better predictions. 1972.
superpositions must be used both in space as well as time.

[101 Cundall. P. and St-ack. D. L.. "A Discrete Model "Or
Granular Assemblies," Geotechnique, Vol.29, 1979.
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Paper E

INFLUENCE OF THE MICROSTRUCTURE OF GRANULAR

MEDIA ON WAVE PROPAGATION AND DYNAMIC LOAD

TRANSFER

A. SHUKLA AND C. Y. ZHU
Dynamic Photomechanics Laboratory

Department of Mechanical Engineering & Applied Mechanics
University of Rhode Island

Kingston, RI 02881

ABSTRACT

Dynamic load transfer in granular material occurs essentially through contact mechanisms between each
grain. This phenomenon is quite a complex process and depends inherently on the microstructural packing
arrangement of the media. An experimental investigation is conducted to study wave propagation in
systematic aggregates of disc assemblies. Attention is focused on load transfer path, wave velocities, wave
attenuation and the stresses which are generated at the contacts due to the passage of stress waves. The
optical technique of photoelasticity along with high speed photography is utilized to get the whole field
stress distribution in the granular media which is subjected to explosive loading. The granular media is
simulated by circular discs made of photoelastic materials. Several systematic arrangements of these discs are
used in different experiments. The results show that the load transfer phenomenon depends strongly on the
microstructure of the media. Experiments are performed with initially unstressed media as well as media
with prestress.

1. INTRODUCTION

It is commonly observed that the microstructural packing or the fabric of the granular media strongly
affects its mechanical behavior. Considerable effort has been spent both experimentally and theoretically to
look at the influence of microstructure on e" .formation and strength of granular media. Oda [1, 2] was among
the first to observe the microstructure or fabric of sand in unloaded and deformed specimens. These
specimens were tested in the triaxial and direct shear apparatus by using thin sections and a polarized
microscope. Borowicka and Arthur [3, 4] observed and measured the microstructural change of sand loading
by means of either microscopy or radiography. Konishi [5] conducted biaxial compression and simple shear
tests on two dimensional granular media, fabricated from epoxy resin cylinders, and examined the
microstructure change and the state of stress in the granules using photoelasticity. All this experimental
work and that of several others [6, 7] suggest that the concept of the fabric of the granular media can be very
useful in understanding their mechanical properties. Based on these experimental findings, several theoretical
[8, 9] models have developed constitutive equations for the granular media taking into account the
microstructural characteristics. However, most of this work has been done for static loading conditions.
Recently, Shukla and Damania [10] have conducted dynamic experiments using photoelasticity to study wave
propagation in granular media. Their experiments show that the dynamic load transfer depends on the angle
made by the normals at the contact points of two adjacent granules.

The purpose of this study is to evaluate the effect of different microstructure or fabric of granular media
on the wave propagation phenomenon. A total of five different regular microstructural arrangements as
shown in Fig. 1 are considered for the experiments. The choice of these microstructural arrangements is
based on the work of Shahinpoor [11] who has demonstrated that the randomly oriented granules follow
certain distinct packing geometries reffered to as Vornoi cells. High speed photography was used to record
dynamic isochromatic fringes in the birefingei granules as a function of time due to the passage of stress
waves. Dynamic contact stresses at each conta ; Aint and average wave velocities were calculated from the

Journal of Wave-Material Interaction, Vo. 3, No. 3, July 1988
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expeiimental data. The effect of microstructure on these quantities was evaluated. An experiment was also
conducted to look at the effect of prestress on the wave propagation phenomenon in the body centered cubic
geometry.

2. EXPERIMENTAL PROCEDURE

The geometries of the models used in this study are shown in Fig. 1. Five different microstructural
packings or cells based on the work of Shahinpoor [11] were investigated. The granular media was simulated
with one inch diameter 1/4 inch thick Homalite 100 discs. Homalite 100 is a brittle polyester material
which becomes temporarily birefringent under the application of load. Dynamic loading was achieved by
detonating a small charge of PETN in a specially designed charge holder, which was mounted either at the
top or at the center of the model assemblies as also shown in Fig. 1. The experimental models were placed
in the optical bench of a high speed multiple spark gap camera. The camera was triggered at some prescribed
delay time after igniting the explosive. This high speed photographic system operated as a series of high
intensity, extremely short duration pulses of light and przvided 20 photoelastic images at discrete times
during the dynamic event. A typical sequence of four images from each experiment are shown in Figs. 2-7.

3. ANALYSIS PROCEDURE

A careful inspection of the photographs obtained from the experiments revealed that the wave length X
of the loading pulse was much larger than the disc diameter D(X = 4D). Furthermore, the fringe pattern
around the contact points were symmetric on either side of the contact points and were similar to the fringes
obtained under static diametral compression. Both these features indicated that around the contact zone, quasi
static loading was present during the wave propagation event. Thus Hertz equations were used to obtain the
contact stresses, strains and loads.

From the Hertz contact stress theory, the stress field equations around the contact region of two bodies,
as shown in Fig. 8, are represented as

b r 2
F =--b [ z( X0)+ z2 02 (1)

b tzb 2 + 2z2 + 2x2  21+X A b T

+ P[(2x2  2b2 -3z " 2 + +2(b22x -z 2) . 0)]] (2)
b~ ~0 +2 1r-2 2

bL 2 (3)
X Z 0 + +[(b2+2x +2z ) -01-2n -3xz02](3

where 0 1 and 02 are

it(M + N)

MN4 2MN + + +2b2

2t(M- N)
MN4 2MN + 2x2 + 2z2 + 2b2

M (b+7x)2 , N ( +-x)2 7 and
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EXPLOSIVE

(a) (b)

a b
(c) (ci)

(e) (f)

Figure 1. Micstructual arrangements used in different experiments.
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Figure 3. Isochromatic fringes obtained in geometry lb.
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Z

X

Figure 8. Coordinate system for two discs in contact.

2 2
A= 1v I  1 -v 2

(- - ( - + )
A+B E2

1 1 1 1 1
A=T-(-+- +-+-)+

R, R2  R1  R21 , (1 1) (1 1 )2 1 1 1 .2

,+ -4( ,X( )sin2a

R I 1  R R2  R R R R R

1 R 2  1  1  R R

Subscripts I and 2 refer to the bodies making the contact as shown in Fig. 8. R1 , RI', R2 and R2 ' are the
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principal radii of curvature at the point of contact and o is the angle between the corresponding planes of the
principal curvatures. E is the modulus of elasticity and v is Poisson's ratio.

The stress field equations are coupled with the stress optic law

Nf
31-0 2 = hY (4)

where al, a2 are the principai stresses, N is the fringe order, fg is the material fringe value, and h is the
model thickness.

In order to accurately determine the contact length and friction factor from the full field photoelastic data,
Eq. (4) is solved using an overdeterministic method developed by Shukla and Nigam (12]. These values were
substituted in the Hertz stress field Eqs. (1 - 3) and the contact stresses were numerically integrated along the
contact length to obtain the contact loads.

4. RESULTS AND DISCUSSION

The dynamic isochromatic photographs obtained from all the expeiments showed the full field
development of the load transfer process in the bulk of the granular media. These photographs clearly reveal
the effect of microstructure on the load transfer process and provided the data necessary to obtain the wave
velocity in every direction and also the normal and tangential load at every contact point.

Fig. 2 shows a sequence of four photographs obtained during wave propagation in a single chain of discs
(geometry la). The wavelength of the pulse is seen to be around four discs diameters. Also the fringes are
normal to the contact and there are no fringes due to the side supports of the loading frame. This clearly
illustrates that there is no energy transfer occurring at the side supports and that all the energy is channelled
down the chain. From the photographs the wave front position was plotted as a function of time. The
gradient of this graph gave the instantaneous wave velocity. It was observed that the wave velocity drops
from 1240 m/s to 1000 m/s in the initial four inches of travel. After this the wave travels with a constant
velocity of 1000 m/s. The reason for the initial high velocity may be that the first few discs are compressed
stronger against each other and the ratio of the incremental strains to incremental stresses might be very
large. This will lead to larger effective modulus and thus higher velocity.

The contact loads obtained from photoelastic fringes were plotted for different contacts as a function of
time as shown in Fig. 9. At a given contact the load increased from zero to a peak value and then gradually
decreased to zero. A typical duration of the pulse at the contact was 110 pis. The wavelength of the pulse
was calculated by taking the product of average wave speed and the pulse duration at the contact. The
wavelength thus obtained was 120 mm (i. e., around four disc diameters). This value compared well with the
visual observation from the photographs. Due to internal losses within the granule, energy spent in closing
the contact and some frictional and reflection effects, the peak contact loads dropped as the distance from the
explosive loading increased. Using the values of peak loads, it was found that there was a 20% decrease in
load as the wave travelled 5 disc diameters starting from the second disc. This is much higher when
compared with the drop in peak load for a uniform bar which is 2% for the same distance of travel.

Fig. 3 shows a sequence of four photographs obtained due to wave propagation in geometry lb. This
geometry has a coordination number of three, i.e., each grain is in contact with three other grains. The
wavelength of the loading pulse is about 5 disc diameters. Again, no fringes appear at the contacts with the
supporting loading frame indicating that all the energy is channelled along the cell structure. The average
wave velocity in the vertical direction was found to be 800 m/s. This is about 20 percent lower than the
average velocity in the single chain disc assembly. This decrease in the average velocity is largely due to the
fact that the wave velocity is largest in the direction normal to the contact points. When contact points
between two adjacent granules deviate from 1800 this velocity drops. Thus the wave velocity in this
assembly is higher when the transfer occurs from a granule which is vertically on top of the other, whereas
the velocity drops when the granules are at an angle to each other.

Besides the wave velocity, the photoelastic fringes were also analyzed to get the contact loads as a
function of time as shown in Fig. 10. The peak contact load at the contact point 1 was found to be 1300N.
As the wave entered the following two contacting granules the peak load dropped by 40% at contact points 2
and 3. The loading wave then enters the next granule through contact points 4 and 5. Since these points are
not normal to points 2 and 3 the peak loads further drop by 35 percent. The contact load at point 4 builds up
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as energy which is channelled in through two contact points has only one exit point. The peak load at point
6 wa$ found to be 700N. Thus in going from point I to 6, a vertical distance equal to 2.73 times the
diameter of the disc, there is an attenuation of about 46 percent in the peak load. This is considerably larger
than the drop seen in the single chain assembly and clearly indicates the effect of microstructure on thc wave
propagation phenomenon.

The wave propagation phenomenon in a Body Centered Cubic (BCC) arrangement, geometry Ic, is
shown in the four frames of Fig. 4. The wave propagated only in a single chain in this arrangement. No
energy was transferred to other chains in the assembly. Comparison of Fig. 4 and Fig. 2 shows that the
wave propagation phenomenon is identical for the single chain and the BCC packing, when the explosive
loading is on the top of a disc in the assembly.

The photoelastic fringes for the hexagonal closed-packing arrangement, geometry Id, are shown in
Fig. 5. The wave propagation in this experiment does occur in two dimensions. The load transfer in this
experiment can be categorized by two distinct chains: the primary chains (such as chains a and b as shown in
Fig, ld) which emanate from the disc on which the explosive loading takes place and the secondary chains
which emanate due tc contact of other discs with the discs in the primary chain.

The normal and tangential loads were computed from the photoelastic data at each point as a function of
time. It was observed that the tangential loads were very close to zero for the primary chains. Thus, the
contacts of the primary chains were frictionless, indicating that they behaved similar to the single chain
assemblies but with inclined orientation with respect to the explosive loading. The contact loads versus time
for different contacts were plotted for the primary chains as shown in Fig. 11. The drop in the peak loads
from one contact to another was large as compared to single chain or BCC packing experiments, since energy
transfer occurs to the secondary chains as the wave propagates in the primary chain. The wave attenuation
for 5 disc diameters of travel in the primary chain was 70% as compared to 20% for the single chain and the
BCC packing. Also, the average velocity in the vertical direction was 950 m/s which was about the same as
in a single chain experiment.

The peak normal contact load at different contact points and the load transfer paths are shown in Fig. 12.
The peak loads in the triangular region enclosed by the main chains are considerably higher than the contact
loads outside this area. This indicates that the region of intense loading due to explosion is in the envelope
enclosed by the two primary chains.

From the BCC and HCP experiments, it was observed that the load transfer path and the magnitude of
load transfer from one contact to another was related to the angle made by the normals to the contacting discs
at the contact point. If the input loading is normal and the angle made by the normals between the two discs
as shown in Fig. 13 is acute (Ct-j < (r/2)), no load transfer would occur, however, if the angle made by the
normals is obtuse (aij > (7r/2)), mechanical signals would propagate through the contact. To further
illustrate this point consider the load transfer into and from disc A in the HCP geometry. The normal
contact loads at every contact point made by disc A with the neighbouring discs are shown in Fig. 14. Wave
energy entering at point 1 shows maximum transfer across point 2 which is directly ahead of point 1.
Although contact points 3 and 4 make the same angles with the main chain, the contact loads are higher at
point 4 than point 3 due to the superposition of loads from the other discs. No load transfer occurs across
points 5 and 6 as ctij < (7t/2) for these contact points. A detailed study of the angular dependence of load
transfer in a granular media has been conducted by the authors and is presented elsewhere [13].

Fig. 6 shows a sequence of four photographs as the wave travels in geometry le. This geometry has
coordination numbers of both 4 and 5. The isochromatic fringes show a complex nature of load transfcr
phenomenon. The peak normal contact loads at different contact points are shown in the left part of Fig. 15,
while the main load transfer paths are shown in the right. In the vertical direction the bulk of the energy is
channelled through a column consisting of the primary cell structure. In the horizontal direction there are
two chains of load transfer. The first horizontal chain making contact with the primary cell carries most of
the load and is shown in Fig. 15 as the high load chain. The first horizontal chain making contact with the
second cell carries a lesser amount of load and is shown in Fig. 15 as the low load chain. It appears that this
sequence is repeated as one goes down te column of the cells. The photograph from this experiment also
shows that the energy entered each cell within the column through four contact points, i I to i4 as shown in
Fig. 15 and exits mostly through six contact points 01 to 06. During wave propagation in this geometry,
position of the maximum vertical contact load alternated from one cell to the other in the column between
the point along the centerline (point A) and points on the side of the centerline (points B and C). When the
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maximum vertical contact load was at the point along the center line, high load transfer occurred through the
horizontal chain in the adjacent cells. Howetver, when the maximum vertical contact load was on the side of
the centerline a lesser load was transferred through the horizontal chains in the adjacent cells. The average
wave velocity along the vertical direction in this geometry was 850 rn/s whereas the horizontal chains
showed a velocity of 1000 rn/s. It should be pointed out here that when the input load to a disc had a large
tangential component, some energy tranfer did occur across to discs which were at right angles.
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Figure 12. Peak normal contact loads ZL different contact points and the load transfer paths in the HCP
geometry.
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Figure 13. Contact angle made hy normals drawn from the center of granules to the contact point.
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Finally, an experiment was conducted to study wave propagation in a BCC geometry with a prestress on

it. The reason for conducting this experiment was to verify the results of Fig. 4. It was felt that maybe

wave propagation in Fig. 4 was seen only in the vertical direction due to gravitational loading. Thus a

biaxial prestress of 250N was applied to the BCC arrangement of discs using a specially designed loading

fixture as shown in Fig. 16. The dynamic explosive loading was applied in the center. A series of four

photographs obtained from this experiment are shown in Fig. 7. They verifiy that wave propagation only

occurs along the two normal chains with no energy transfer across contacts which are at right angles. The

only difference in this experiment was that the velocity was about 25% higher in comparison to the

experiment without any prestress.

Figure 16. Biaxial loading frame.

5. SUMMARY

Dynamic photoelasticity was employed to study the effect of microstructure on wave propagation and

dynamic load transfer in a granular media. The granular media was modeled as one and two dimensional

arrays of circular discs fabricated from photoelastic material Aomolite-100. The experimental data were

analyzed to determine the wave velocities, identify characteristic dynamic load transfer paths and

quantitatively calculate the dynamic contact forces at each contact point.
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ANGULAR DEPENDENCE OF
DYNAMIC LOAD TRANSFER DUE TO
EXPLOSIVE LOADING IN GRANULAR
AGGREGATE CHAINS

A. SHUKLA Department of Mechanical Engineering and Applied Mechanics, University of Rhode Island.

C. Y. ZHU Department of Mechanical Engineering and Applied Mechanics, University of Rhode Island.

M. SADD Department of Mechanical Engineering and Applied Mechanics, University of Rhode Island.

An experimental investigation was conducted to study the dependence of packing geometry on the dynamic load
transfer in two dimensional granular aggregate chains. The granular media was simulated by circular discs made of
photoelastic material. The experimental method utilizes the combination of high speed photography and photoelasL-
city to visualize the dynamic load transfer phenomenon in two dimensional model chains subjected to explosive
loading. The photographs thus obtained were analysed to get the normal and tangential loads at the contact points as
a function of time. The results indicate that the load transfer is strongly dependent on the angle between the vectors
drawn from the mass centres of the contacting granules.

1 INTRODUCTION centres of a pair of granules. as shown in Fig. 1. This
Granular media transmit mechanical loadings primarily angle plays an important part in determining the
through contact mechanisms between each grain. This dynamic load transfer in such a medium. Examples of
phenomenon is quite a complex process and depends this fact have been shown in the work of Shukla and
inherently on the microstructural packing arrangements Damania (3) and are shown in Figs 2 and 3. These
of the media. Porosity alone is not a sufficient measure to dynamic photoelastic figures illustrate how waves from
characterize such a load transfer process. Recently, an explosive charge, located at the top of each photogra-
several theoretical and experimental investigations ph, move through two different granular packing
(1X2)t have been conducted to relate microstructure to arrangements.
macroscopic behaviour. A general finding of some of this Studies of the load transfer in granular media have
work is that local microstructure or fabric is significant been previously conducted. Drescher and De Josselin De
and that particular fabric vectors and tensors can be
used to develop theories to predict the mechanical
behaviour of such materials. In particular, branch
vectors between the mass centres of typical grains and
normal vectors in the direction of the contact normals
have been proposed (see Fig. 1). Specifically, Nemat-
Nasser et al. (1) have suggested mechanical constitutive Branch v.ector
relations based upon writing the stress as a function of a
second order fabric tensor, Fii, where

W Contacty llr, / pFj = - j.(l normal

1W , vector C

with W being the number of n-contacts per unit volume.
This study addresses this issue for the case of dynamic
load transfer by investigating the effects of the angle
between branch vectors on the wave propagation
through granular aggregate assembly chains.

The term 'contact angle' is defined as the angle
between any two branch vectors connecting the mass

The WS o(thi paper w'ti receved at the Inutituitomon 1 0.4pril 1987 and accepted
toer iuhicationin M~ Januarv /g8 Fig. I Branch vectors connecting the mass centres of a pair of
SRelerenie, are qLen i t¢4ppendzt granules
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>-el

Frame 3. t = 55.5 tis Frame 9.t = 935 is

ffl " , : ,

Frame 14. = 133 ;As Frame 19. t= 164.5 1ps

Fig. 2. lsochromatic fringes due to explosive loading in a body-centred cubic arrangement

Jong (4) have simulated granular media by using loadings of short duration yielding a primary wave
assemblies of circular discs, and then studied the static length of approximately four to five grain diameters.
load transfer through the assembly by means of photo-
mechanics. Rossmanith and Shukla (5) extended this idea
to the dynamic case through the u-e of high speed pho- 2 EXPERIMENTAL PROCEDURE
tography. Additional dynamic WOrK was also carried out The experimental model used in this study was com-
by Shukla and Damania (3), and Shukla and Rossmanith prised of disc chain assemblies of Homalite 100 discs as
(6). Most of this previous work focussed on wave propa- shown in Fig. 4. Homalite 100 is a birefringent brittle
gation phenomenon in general without going into details polyester material whose mechanical and optical proper-
of relating specific microstructure to the associated wave ties are well characterized (E = 4.8 GPa, v = 0.35 and
motion. f, = 21.9 kN/m). The discs were 1 in in diameter and 1 4

The purpose of this investigation was to study the in thick. The angles 0, and 02 in the assembly were
relation between the dynamic load transfer and the changed in a series of experiments. During the experi-
contact angle in single disc chains of circular granules. .ments the discs were dynamically loaded by firing a small
This specific relation will prove to be useful in character- charge of explosive PETN in a specially designed charge
izing how local microstructure affects the wave propaga- holder. The wave propagation phenomenon due to
tional phenomena. Dynamic photoelasticity along with explosive loading in the granular media was studied
high speed photography are employed to collect time- using the technique of dynamic photoelasticity and high
dependent data on the rapidly moving wave motion. speed photography.
Simplified Hertz contact stress theory along with photo- The models were placed in the optical bench of a high
mechanics h:-s been used to determine the load transfer speed multiple spark gap camera. I >.: camera was trig-
ietween pairs of granules. The wave motion of interest gered at some prescribed delay time after igniting the
here is transient in nature being produced by explosive explosive. This high speed photographic system operated
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k: iii( V NNA ,

Frame 5, t = 72 Ms
Frame 3. t = 60.5 Ps

Frame 12, = 125 ;s Frame 16. = 148.5 ps

Fig. 3. Isochromatic fringes due to explosive loading in a hexagonal cubic arrangement

as a series of high intensity, extremely short duration Hertz equations were used to obtain the contact stresses.
pulses of light and provided 20 photoelastic images at strains, and loads.
discrete times during the dynamic event. A typical From the Hertz contact stress theory (7), the stress
sequence of three images for two different orientations is field equations around the contact region of two discs, as
shown in Figs 5 and 6. These phQtographs of the wave shown in Fig. 8, are represented as
propagation process at different stages of development
provided the data necessary to obtain the contact loads b ,(:b0I - X02) + fZ'02;

along different chains. °zz = A(

07X b [z(.b 2+2:2 +2x-' ?7r )x

3 ANALYSIS PROCEDURE = rA [( b ht b 3)

A careful inspection of the photographs obtained from 2 x
the experiments revealed that the wave length, A, of the + f3 (2x 2 - 2b2 - 3z2)02 +

loading pulse was much larger than the disc diameter, D. h

The wave length was determined by measuring the "2-X
length of the photoelastic fringe patterns of the loading + 2(b2 

_ X _ -2 ) -

pulse. and the data indicated that A 4D. Furthermore, b j
the fringe patterns around the contact points were sym- b
metric on either side of the contact poin's and were rA= : + fl (b- + 2- 2-)
similar to the fringes obtained under static diametral -rA L
compression as shown in Fig. 7. Both these features indi-
cated that around the contact zone, quasi static loading - - 2 - 3x- 12.

was present during the wave propagation event. Thus h
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Fig. 4. Geometrical arrangement used in experiments

where 4, 0, are

MrA + B)
AB .,i(2AB + 2x 2 + 2z 2 - 2b 2)

r(A - B) b Frame 19

= ABi(2AB + 2x 2 + 2z2 - 2b 2) Time 14,s

A = {(b + x)2 + ';

B = {(b-x) 2 + Z2
'  A = 2R V(3)

with E = modulus of elasticity, v = Poisson's ratio, f is a
friction factor, and b is the half contact length.

The stress field equations are coupled with the stress
optic law

Nfo,at - a2 =h (4)

where at, a 2 are the principal stresses, N is the fringe
order, f,, is the material fringe value, and h is the model
thickness. Fig. 5. Typical isochromatic fringes obtained in symmetric arrange-

In order to accurately determine the contact length ment(0, = 0z}
and friction factor fr- m the full field photoelastic data,
equation (4) is solved using an overdeterministic method
developed by Shukla and Nigam (8). These values were
substituted in the Hertz stress field equations (2) and (3) a parametric study of the effects of the branch angles 0,
and 'e contact stresses were numerically integrated and 02 on load transfer phenomenon. The branch angles
alo ie contact length to obtain the contact loads, included the values of 30, 45, 60, 75, and 90 degrees. The

dynamic isochromatic photographs obtained for two of
these experiments are shown in Figs 5 a -d 6. Using the

4 RESULTS AND DISCUSSION stress field equations (2) and (3) along with 14). and the

A series of five groups of experiments was conducted photoelastic fringes near the contact points, gives the
with the geometry shown in Fig. 4. These groups include intensity of the contact stresses. The fringes are sym-
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Fram 6 that as the branch angle increases the dynamic peak load
drops. However, the wavelength of the loading pulse

Time 66 As increases with the branch angles. Figure 10 shows
another typical case with 0, = 90 degrees and 0 = 30
degrees. For this case the load P3 in the 90 degree branch
was found to be zero.

Since the significant point in our study is not the
actual loadings but rather the transfer characteristics, the
ratio of transmitted to incident loads is to be used. This
ratio has symmetry with respect to the branch angles 0,
and 02, i.e., P2/P, as a function of 0, and 82 is the same
as P3/PI written as a function of 0, and 0. Consequently
only one ratio, P2/P 1, will be considered in detail.
Figure 11 shows this load transfer ratio as a function of

. contact angles 01 and 02. This figure illustrates the rapid
attenuation of the load transfer with the branch angle,

*and it also shows the inter-relationships of 0, and 0, on
Frame 7 the load transfer. For example, a higher value of 0, pro-
Time 72 ;s duces less load transfer attenuation for a given branch

angle, 02.
The effect of branch angles on the signal wave length is

shown in Fig. 12. Here the duration of contact is plotted
against the angle 02. It is observed that a significant
increase in this duration time occurs as the branch angle,
02, is increased. This means that the granular assembly
will act as a wave guide which will increase the wave
length of the transmitted transient signal.

5 CONCLUSIONS
,,_ .. ' The experimental study conducted in this paper demon-

strates the angular dependence of dynamic load transfer
Frame 12 in two dimensional granular media. The results indicate
Time 110 j s the following.

(1) Rapid attenuation of load transfer occurs as the
branch angle increases from 0 to 90 degrees.

(2) The attenuation of load transfer also depends on the
inter-relationship between the two branch angles.

(3) The wavelength of the loading pulse increases with
the branch angle. Here again the inter-relationships
between the branch angles has an influence on the
duration of the contact load. The wavelength almost
doubles as the contact angle increases from 15 to 75
degrees.

It should be pointed out that the current work rep-
resents only a first step in understanding the wave propa-

Fig. 6 Typical isochromatic fringes obtained in unsymmetric arrange- gation process in a complex aggregate assembly. For
ment (0, = 02) example, in considering the wave motion in Fig. 3, many

waves take very complex paths during their propagation
histories. The simple two branch geometries considered

metric in both chains, indicating predominantly normal in the current study can then be interpreted as only a
loading. The absence of any fringe patterns at contact beginning in the understanding of how the local micro-
points along the side supports confirms that all energy is structure effects the transmission of waves in granular
channelled along the disc chains and no loss of energy materia .. Finally, theoretical-numerical work is also
occurs to the side supports. The normal contact loads underway to calculate this dynamic load transfer pheno-
obtained from these photographs for a specific experi- mena, and this will be reported in the near future.
ment are shown in Fig. 9 for case of 0, = 75 degrees and
02 = 30 degrees. The three contact loads at each of the
three contact points are labelled P1, P,, and P3 as ACKNOWLEDGEMENTS
shown. The load at each contact point increases as-the The authors would like to acknowledge the support of
wave interacts with it, builds up to a peak value, and the Army Research Office under the contract n1o.
then monotonically decays to zero. It can clearly he seen DAAL03-86-K-0125.
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WAVE PROPAGATION IN
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ABSTRACT

An experimental investigation is conducted using dynamic photoelasticity and high
speed photography to study the wave propagation due to blast loading in porous media as a
function of fluid saturation. The porous media has been modelled as continuous solid

containing particular arrays of holes or voids. The study has focused mainly on the effect
of the porous structure on transient pulse propagation as well as the effect of the moisture
in the pores on wave propagation. A series of experiments have been conducted using a

sheet of Homalite 100 with different geometry of the periodic array of holes. A small
amount of explosive is used to generate the L.,ss wave. Dynamic photoelastic
photographs are taken with the high speed camera as the wave propagates across the holes.
These data are analyzed to obtain the wave velocity as well as the stress wave attenuation

in the porous media.

INTRODUCTION

The problem of interaction of .elastic waves with discontinuities or boundaries of
complex shapes arises in situations where waves propagate through a medium having
cavities, inclusions or cracks. Due to material inelasticity and inhomogeneity, the wave
propagation in a discontinuous medium is much more involved than homogenous elastic
wave propagation and it shows directional as well as frequency dependence. This
phenomenon becomes significant for step loading pulses where the wavelength are of the

order of the size of the discontinuities. Such problems denoted as scattering and
diffraction problems have long standing interest in acoustics and electromagnetic wave

theory.

Gi



Composite materials such as concrete, ceramics, etc. are characterized by the number
of pores, voids or fluid filled cavities. The influence of these pores on the deformation

and the failure of these materials has not been interpreted uniquely. Since areas of stress
concentration may arise in the vicinity of these pores, it is believed that the pores may
play a role in influencing the crack and wave propagation in these materials. Moreover,
porous materials are used extensively for shock isolation as they are capable of absorbing
large quantities of energy during impact loading. Hence the behavior of these materials

under impulsive loading has been of substantial interest to engineers.
Wave propagation in a discontinuous media has also been of interest to the soil and

rock mechanics community. The propagation of elastic waves in the earth's crust is most
intimately related to the properties of soil and rock. The elastic properties of these

substances are greatly affected by the amount of watei contained in them, packing density,
porosity, the size of the particles that form the substances, and the binding material which
they contain. Current interest in geomechanics is focussed on the transient phenomena
occuning in earthquakes, wave loading and consolidation. Moreover the increasing needs

for urban and resource development demand faster, safer and more efficient procedures for
underground excavations of rock. Most methods of rapid excavation in hard rock use some

form of dynamic loading, such as explosive or water jet. This type of loading produces
stress waves which induce crack initiation and propagation.

The initial attempts to study rock media and soil structure as arrays of elastic
particles (eg. spheres and discs) were made by Iida (1,2), Takashashi and Sato (3),

Gasmann (4) and Brandt (5). They investigated the propagation velocity as a function of
confining pressure, particle size and aggregate geometry. The effect of water content in

the pores on elastic velocity has been studied by several investigators. Oliphant (6) and

Owen (7) found that slight additions of wnter caused a sharp drop in velocity with a slow

decrease as the saturation approached 100 percent. Hughes and Jones (8) measured the
dilation wave velocity of samples of very low porosity, less than 1%. Using the same

apparatus and methods, Hughes and Cross (9) measured the velocity in Soienhofe

Limestone (porosity 4%) and Caplen Dome Sandstone (porosity 5%) for dry and saturated

samples.
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A considerable amount of research is also under way in determining the internal

structure of porous and granular media by various sounding iechniques. For example,

acoustic emission methods have been presented by Hardy (10), while Aliison and Lama

(11) have discussed a low amplitude vibration technique to predict rock structure.

Current research in wave propagation in such media has involved, for example,

statistical theories by Varadan et al (12) or mixture theories by Junger (13). Analytical

approaches are often limited as they cannot fully account for the material inhomogeneity,

isotropy and defects. Most of the previous work focused on wave propagation phenomena

in general without going into the details of relating specific microstructure to the associated

wave motion.

This paper reports on an experimental study of wave propagation due to explosive

loading in a porous medium. The porous medium was modelled as an array of holes

machined in a continuous ;neet of a brittle polyester material Homalite 100. The study

looked at the wave propagation phenomenon from a microscopic point of view by going

into the details of the geometric nature of the porous structure. The geometry of the pores

was changed by varying the size of the holes, changing the pitch or the spaking between

the holes and changing the geometric arrangement of the holes. In all the ex-criments the

stress waves were produced by explosive loadings of short duration. Dynamic

photoelasticity and high speed photography were employed to collect the time dependent

data as the wave front moved rapidly through the porous structure.

EXPERIMENTAL PROCEDURE

To investigate the behavior of svess-waves in the periodically flawed half-plane, also

referred to as the porous medium, a series of dynamic photoelastic experiments was

conducted. The photoelastic models were fabricated from a large sheet of Homalite-100

having dimensions of 254mm x 305mm x 6.4mm. Homalite-100 is a birefringent brittle

polyester material whose mechanical and optical properties are well characterized. The

stress-sr amn behavior of this material is similar to that of rock. An array of holes having a

pitch p and diameter d was machined to simulate the porous media.

Figure 1 shows the geometry of the porous model. Dynamic loading to p,-,?dice the

incident wave was achieved by detonating 80mg of lead azide directly on top of the model.
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Two different arrangements of the holes were used as shown in Fig.2 The arrangement of
holes in the first and second type of configurations are referred to as geometry A and B

respectively. For geometry A three different pitches of 6.25mm, 12.7mm and 25.4mm were
used. The diameter of the holes was increased in steps to achieve different porosities.

Porosity is defined as:

porosity - [d/21 2* 100
2

p

where d is the diameter and p is the pitch of the holes.

Due to the constraints in machinability of Homalite 100 and to avoid obscurity of
the fringe pattern in the photographs, the porosity was limited to a maximum of 70%.
Tables 1 and 2 list the pitch, the diameter of the holes and the corresponding porosity

which were used with geometry A experiments.

For geometry B, two different pitches of 12.7mm and 25.4mm were used. Again,
different diameter holes were used for each of these pitches to achieve different porosities.

Table 3 shows the pitch, the diameters of the holes, and the corresponding porosity which

were used with this geometry.

In the saturated porous media experiments, water was used as the saturation fluid.
It was contained within the pores by sandwiching both sides of the photoelastic models by

means of thin plexiglass sheets [14]. The sides of these sandwiched models were made
leak proof by pressing them with pressure binders. Care was taken to minimize the

number of air bubbles so as to achieve a high degree of saturation [15,161.

The wave propagation phenomenon due to explosive loading was studied using the
technique of dynamic photoelasticity and high speed photography. The models were placed
in the optical bench of the high speed multiple spark gap camera. The camera was

triggered at a prescribed delay time after igniting the explosive. The high speed
photographic system operates as a series of extremely short duration pulses of high
intensity light and provides 20 photoelastic images at discrete time intervals during the

dynamic event. These photographs of the wave propagation process at different stages of

development provided the necessary data to obtain the velocity and attenuation of the
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leading front of the longitudinal wave.

ANALYSIS

The sequence of 20 photographs obtained from the high speed camera were analyzed

to obtain the compressional wave velocity and the stress wave attenuation in both the
unsaturated and the saturated porous media. The compressional wave velocity was
obtained by plotting the instantaneous position of the wavefront with respect to time. The
gradient of this line gave the average compressional wave velocity. Figure 3 shows a
typical position versus time ploL The portion of the curve between X and Y represents the
region during which the stress wave was in the porous zone. The portion of the curve

before point X and after point Y represent the regions before the stress wave entered the
porous zone and after it emerged from it respectively.

The fringe patterns were further analyzed to determine the propagation and
attenuation characteristics of the porous media. To obtain the attenuation characteristics, a
plot of the maximum normalized fringe order around the hole versus the hole number

(along the line 8=0) was obtained. The normalization was done with respect to the
maximum fringe order on the fust hole directly below the explosive charge. To separate

the effects of material and geometric attenuation, an expression of the form

N e-ky
N max =

for the maximum fringe order was sought, where y is the distance from the loading source
and k, the coefficient of material attenuation. The term y-' accounts for the geometric

attenuation in two dimensional space (plate). The attenuation coefficient and the constant
N. were obtained by plotting N.y 1 't vs.y on a semilog scale. In order to compare the

saturated and unsaturated porous media with the unflawed material the attenuation curves

for all three were plotted together.

RESULTS AND DISCUSSION
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The first series of experiments was conducted with geometry A and involved five

models with pitch equal to 12.7mm. The diameter of the holes was increased in steps to

achieve porosity ranging from zero to seventy percent. With the detonation of the

explosive, longitudinal and shear waves were produced which travelled with velocities of

2140 m/s and 1220 m/s respectively in the plate. As the longitudinal wave passes over the

first row of the array of holes the stresses around them start to build up. Since the

diameter of the holes is much less than the radius of curvature of the approaching wave

front the fringes tend to align themselves in a direction which is normal to the approaching

wavefront as shown in Fig 4. As the wavefront impinges upon the hole boundary

scattering and diffraction takes place and reflected longitudinal waves ard shear waves are

produced. The reflected waves interact with the propagating wave altering the

semicircular na ure of the wavefront. With the larger diameter holes, the ratio X/d (where

X is the wavelength of the pulse and d the diameter of the holes) decreases resulting in an

increased level of sc-attering and diffraction.

Figure 5 shows a typical set of photographs obtained during the wave propagation

experiments. These dynamic isochromatic fringes show the development of the wavefront

as the wave propagates through the porous medium. With continued reflection from each

row of holes and the superposition of the reflected waves, the curvature of the leading

dilatational wavefront keeps on decreasing as the wave moves further into the porous zone.

This phenomenon increases for higher porosities. Figure 6 shows the location and the

shape of the wavefront for a given porosity.

The dynamic photoelastic photographs were analyzed to get the leading wave

velocity. Figure 7 shows the variation in wave velocity as a function of porosity. The

dilatational wave velocity, measured in a direction directly below the charge (along the line

theta=O), is less than the dilatational wave velocity in an unflawed half-plane. The wave

velocity decreases by almost 18% as the porosity is increased from 0 to 20%. As the

porosity is increased further, the drop in velocity is small until the 50% porosity mark is

passed, after which wave velocity decreases sharply and drops down to almost 60% of its

value for the unflawed half-plane.

The dilatational wave velocity also shows directional dependence and tends to

decrease as the angle theta is increased. Figure 8 shows that the velocity at any angle
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theta depends upon the diameter of the holes in the porous zone. For small diameter
holes, little change in velocity can be seen as the angle theta is increased from 0-30%.
But as the diameter of the holes is increased, the wave velocity drops noticeably and this
drop increases as the angle theta is increased. Around ) equal to 300, there is a drop in
velocity of 6% for the 9.6mm diameter holes, 10% for the 10.9 mm diameter hole and
16% for the 11.7mm holes. This dependence of the wave velocity in the porous zone on
the angle theta is due to the fact that the wave sees a different kind of microstructure for
different values of theta. This decrease in velocity also accounts for the decrease in the
curvature of the wavefront mentioned earlier.

Effect of Pitch

A series of experiments was conducted to study the effect of pitch, or the spacing
between the holes on the wave propagation phenomenon. Figure 9 shows typical
photographs of the stress wave propagation in the porous medium for three different values
of pitch. As the pitch is increased, the ratio of the number of holes to that of the
wavelength of the stress wave decreases, resulting in reduced diffraction and scattering of
the stress wave. The influence on the stress around the holes due to neighboring holes is

also reduced.

Figure 10 shows the normalized wave velocity vertically below the explosive charge
as a function of porosity for holes at three different pitches. For all three pitches, the
wave velocity decreases as the po .,sit, of the medium is increased. However, for a given
porosity, the wave velocity increas. .s the pitch is increased. This behavior in stress

wave velocity is also observed in other directions (0 # 0).

Effect of Geometry

To study the effect of microstructure or the arrangement of the pores on wave
propagation characteristics, the arrangement of the holes in the porous media was changed
from geometry A (cubic arrangement) to geometry B (hexagonal arrangement). Figure 11
shows typical isochromatic fringes obtained during wave propagation in geometry B.
These fringes show more scattering and diffraction than obtained with geometry A. Figure
12 shows the wave velocity as a function of porosity vertically below the explosive charge
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for geometry B. The velocity in geometry B decreases with porosity like it does in
geometry A. The velocity increases as the pitch goes up for a given porosity. Although
the velocity vertically below this explosive charge shows a similar trend in both

geometries, the absolute value of velocity in geometry B is much lower than in geometry

A. This comparison is shown in Fig. 13.

For geometry B, the stress wave velocity also shows directional dependence but

here, unlike geometry A, the velocity increases as the angle is increased from 0-30*.
Figure 14 shows the normalized wave velocity as a function of angle 8 for a given pitch

and varying porosities in geometry B. The velocity increases with e and, for 8 equal to

30, this velocity almost approaches the velocity for geometry A at 0=0. A similar trend,

but in the opposite direction, can be seen for geometry A where the stress wave velocity

decreased with angle 0 and for 0=-30* approached the wave velocity in geometry B at

8=0". This behavior can be explained by looking closely at the microstructure the wave
sees as the angle 8 is increased in both geometries. Figure 15 shows a schematic of the

microstructure the wave sees at an angle of 45* in geometries A and B. It is interesting to
note that, at 45", the pore arrangement in geometry B appears like geometry A at 0* and

vice-versa. Changing the angle further from 450 to 90 causes the microstructure to go

back to the one observed for 0=0".

Effect of Moisture in the Pores

A series of experiments was conducted with geometry A to study the effect of
moisture in the pores on the wave propagation phenomenon. Figure 16 shows typical
isochromatic fringes obtained when the stress wave propagates in porous media. These

photographs were analyzed to study both the wave velocity as well as the stress wave

attenuation. Figure 17 shows the normalized wave velocity as. a function of the porosity

for three different pitch arrangements. The trend in velocity is very similar to the one

obtained for unsaturated media. However the velocities in the saturated media are much
lower than those for unsaturated media as shown in Fig. 18. For small porosities (TI <

20%) the amount of moisture per unit volume is very small and therefore there is no

difference in velocities. As the porosity is increased beyond 20% the velocity shows a

much more rapid drop in a saturated media than an unsaturated one. This can be
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explained to some extent by the fact that the composite density for the porous media with

water is higher than that of a porous media with air in the holes. These results are in

agreement with those obtained by others [1,2,7,91 for saturated soils.

Attenuation of the Stress Waves

The compressive wave front attenuates rapidly as the stress wave propagates through

the porous media. As in the case of the stress wave velocity, the attenuation of the stress

wave depends strongly on the microstructure of the porous media. Larger the size if ihe

holes, the higher is the porosity and greater is the attenuation of the stress wave.

Moreover, the wave shows a higher attenuation as the pitch or the spacing between the

holes is reduced. The geometry or the configuration of the holes also effects w the

attenuation characteristics and there is higher attenuation for Geometry. "B" than for

Geometry "A". This is to be expected since the stress wave undergoes much more

scattering and diffraction when it propagates through the porous media with Geometry "B"

than it does in Geometry "A".

Figure 19 shows the isochramatic fringe pattern showing the circumferential fringe

distribution around the periphery of the holes for two different hole diameters. To obtain

the attenuation characteristics, a plot of the maximum normalized fringe order vs. the hole

number (along the line theta=O) was obtained. Figure 20 shows the plot of the attenuation

curves for both the unsaturated and saturated porous media for Geometry "A" and pitch =

12.7mm. The attenuation curves are drawn for porosity of 11% and 20%. Figure 21

shows the attenuation curves for the case of unsaturated porous media with Geometry "B"

and porosity equal to 20% and 46%, respectively. For the sake of comparison, the

geometric attenuation in an unflawed halfplane is also drawn on the same plots.

To characterize the attenuation of the stress wave in the porous media and to

separate the geometric damping from the material damping, N,.yt" was plotted as a

function of y on a semilog scale as shown in Figs 23 & 24. These plots were analyzed to

calculate the attenuation coefficients which are shown in Table 4. These values give us

an idea of the attenuation characteristics of the porous material. Higher values of "K"

indicate higher attenuation of the stress wave in that material.
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CLOSURE

Dynamic photoelasticity along with high speed photography were used to study wave

propagation in porous media. Plate specimens were fabricated from Homalite-lO0 and an

array of holes, having a specific geometry, were machined in them to simulate the porous

media. The specimens were loaded explosively on one edge and the resulting isochromatic

fringe patterns were analyzed to obtain the compressional wave velocity and the stress

wave attenuation in the porous material.

The .tress wave speed dropped with increasing porosity. For a given porosity, the

wave speed is lower for smaller pitch in both the geometries. The wave-velocity also

ghowed strong dependence on the micrcstructure of the porous media. Geometry B showed

a larger drop in velocity than Geometry A for the same porosities. Due to the point

loading and the geometry of the porous models, the stress wave exhibits directional

dependence as it sees a different kind of microstructure as a function of the angle theta.

The stress wave shows appreciable attenuation in the porous media. The attenuation

observed was separated into its geometric and material components. The coefficients for

the material attenuation were calculated for different porous medias and are summarized in

Table 4. From the table it can be seen that the attenuation constants are higher for the

case of porous media with a higher porosity and they decrease for the porous media with a

larger pitch but having the same porosity. Moreover the attenuation constants are higher

for the configuration of the holes in geometry B than in geometry A.

The wave propagation characteristics also depend on whether the porous medium

is nearly saturated or unsaturated. Nearly saturated porous media show a larger drop in

wave velocity than the unsaturated media. Moreover the stress wave attenuation is much

higher in a nearly saturated medium than an unsaturated one.
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Paper H

DYNAMIC PHOTOELASTIC
INVESTIGATION OF WAVE
PROPAGATION AND ENERGY
TRANSFER ACROSS CONTACTS

A. SHUKLA Department of Mechanical Engineering and Applied Mechanics, Ui~iversity of Rhode Island,

Kingston, USA

H. P. ROSSMANITH Institute of Mechanics, Technical University, Vienna, Austria

This paper deals with the dynamic contact of an explosively excited disc with another disc or a half-plane. Dynamic
photoelastic recordings show the development of the time-dependent contact area and the formation of the highly
complex diffraction pattern.

I INTRODUCTION 2 EXPERIMENTAL PROCEDURE

The dynamic contact between elastic bodies and the The experimental method utilized in this study was
transfer of momentum and energy across the contact dynamic photoelasticity along with high speed pho-
area is fundamental to studies of dynamic load transfer tography. Dynamic photoelasticity provides global field
in granular or particulate media. When a body made up data during the dynamic contact, such as the change of
of a large number of cohesionless particles is impacted the state of stress in the vicinity of the contact region and
upon with a punch or an explosive, transient dynamic in the bulk of the contacting solids, as a function of time
load transfer paths develop which differ from those and space.
estabfished during static loading. This difference occurs In order to understand the physics of dynamic contact
because, in dynamic loading, inertia effects play an between two elastic solids a series of four controlled
important role. Most of the research to date in contact experiments was performed, where an explosively loaded
mechanics pertains either to static studies or when disc was in contact with another disc or a half-plane and
dynamic impact is considered; first order discretized the explosive excitation was located either at the centre
lump mass models are employed. The dynamics and of the disc or at the rim. Figure 1 shows the photoelastic
mechanics of physical impact between solid bodies up to model and explosive arrangement and Table I lists the
the late 1960s is covered in references (lH4)t. Generally characteristics of the dynamic loading.
in these studies the impacting body is considered rigid The circular discs of radius R = 76.2 mm and the half-
and stress wave effects in the indentor are not taken into plane were fabricated from a 6.35 mm thick sheet of
account. Also, in collision problems, the bodies are Homalite 100 which is a commercially available clear
treated as particles and, again, wave propagation pro- transparent polyester. This photoelastic material
cesses occurring within the body are not taken into becomes temporarily birefringent when subjected to a
account. Recently studies by Comninou et al. (5X6) have state of stress and gives rise to optical interference fringes
focussed on the transmission of wave motion between when viewed in a circular polariscope. These fringes are
two solids. In these theoretical studies plane waves are known as isochromatics and represent lines along which
considered passing from one half plane to another. the difference of the principal normal stresses is constant
Several initial conditions are looked at, including an IX9).
initial gap and also friction at the interface. A recent Dynamic loading was achieved by means of small
experimental study of dynamic load transfer in a granu- charges of 150 mg PETN (experiments Nos I and 2) or of
lar media was done by Rossmanith and Shukla (7) where 100 mg lead azide (PbN 6 ) (experiments Nos 3 and 4). The
load transfer paths in both systematic and random explosive excitation source is located at the centre, A, of
aggregates of disc assemblies were recorded using the disc in experiments Nos I and 2 and at the top, B, in
dynamic photoelasticity. experiments Nos 3 and 4. In the experiments with a

This paper addresses the problem of formation of
dynamic contacts between two solids. The experimental Table 1. List of experiments ofdynamic contact
technique of dynamic photoelasticity is utilized to visual-
ize the formation of contact and wave scattering between Experiment Location of

the bodies. number Configuration charge Charge

No. I Disc/half-plane Centre 150 mg PETN
The MS. of this paper was received at the Institution on 9 September !985 and No. 2 Disc/disc Centre 150 mg PETN

accep edfor publication on 13 May 1986 No. 3 Disc/disc Top 100 mg PbN 6
t Referenes are given in the Appendix No. 4 Disc/half-plane Top 100 mg PbN 6
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2 kV detonation cable
Charge
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Lead azide

2 kV detonation
cable

Explosive 

PETN 
(

containment f -

M 2

Fig. 1. Photoclastic model and dynamic loading arrangement

centre charge, a specially developed pressure contain- pressure waves as developed in (11) render relations
ment device was utilized to prevent the field of view from between the strains, e,, t,, and stresses, o,, oe, and thc
being obscured by the rapidly expanding cloud of corn- isochromatic fringe order distribution. N. In 2D dynamk
bustion gas products. photoelastic wave propagation experiments an r-'

For photoelastic fringe pattern recording, a multiple attenuation as associated with an expanding spherical
spark gap camera of the Cranz-Schardin type was used. wave is commonly observed which is in marked contrast
The system and its use in dynamic photoelasticity have to the r- 1/2 attenuation of the amplitude for cylindrical
been documented frequently in the literature, see, e.g., (9). waves as predicted by theory (12)(13). For wave positions
The experimental outcome is a record of a timc- far from the detonation centre a linear relationship
controlled sequence of 20 images of the spatial configu- between radial stress, o, and radial particle velocity, v,
ration of the dynamic process at discrete times. Thus, a (14), o, = pciv , may be assumed to hold throughout the
sequence of 20 ultra-short flash photographs are pulse. This 'far-field' approximation corresponds to a
obtained that show individual stages of the evolution of local replacement of the detonation wave by a plane
the wave interaction process. In these wave propagation wave with r- 1 attenuation and is supported by experi-
experiments the camera was operated at 200000 frames mental findings.
per second and provided an observation period of 100 ps For contact investigations, the radial expansion of the
with an additional initial deiay of 25 ps. edge of the explosively excited disc is of interest. Free

radial expansion can occur along the circumference
3 THEORETICAL CONSIDERATIONS except in the region of contact. In Fig. 1, as disc No. 1

3.1 Size of dynamic contact area expands, the contact area increases in time. The dynamic
Consider two discs cf radii Ri (i = 1, 2) touching at a contact problem is further complicated due to pulse dif-
point PC(R,, 0) as shown in Fig. 1. Let the centres of the fraction at the edge of contact and transmission across
discs be fixed at Mr(0, 0) and M2(R, + R2, 0). Upon the contact due to time dependent boundary conditions.
detonation of a cylindrical explosive charge at the centre The situation is illustrated in Fig. 2, where two different
of disc No. I a circular crested detonation pulse radiates stages of contact area development during the passage of
from M,. The displacements, u,, u., and the stresses, a,, a half sine pulse are shown. In Fig. 2 the distance A'A" of
oN vary according to Bessel functions. For 'large' values the intersection points of the two circles with radii R,
of r, the asymptotic expansions yield a plane wave + u, and R2 is an upper limit for the extension of
approach. 'Large values' of r are attained within 4 to 5 contact. For two discs the distance A'A" is given by
zeroes of the Bessel function, and in the experiments this
distance r corresponds to a few plate thicknesses b (r . J( u_ , 2 }
8b). Furthermore, any explosively induced pulse dis- A'AR = 2at) = 2R t  I + _ (1)
turbance can be considered the result of the super-
position of a set of harmonic waves. + , +(2)

The data reduction procedures for circular cylindrical ( + 2 2RI 2 +2 (2)
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Y is shown in Fig. 3. Time-dependent wave diffraction
about the moving contact edge during increasing and
receding contact (contact cycles) poses a challenging
theoretical problem. An exact quantitative analytical
treatment of this problem is not feasible to date. Numeri-

A' cal work for simulation of dynamic contact behavior is in
- -- Tprogress.

A 4 EXPERIMENTAL RESULTS AND DISCUSSION

a 2a(g) The results of the dynamic photoelastic experiments will----- -so be discussed here. For convenience the experiments with
X centre charge and the top charge will be discussed

separately.

T 4.1 Dynamic contact experimerts with centre charge
The first experiment refers to the disc-half plane
geometry. An explosive charge of 150 mg of PETN was
detonated at the centre of the disc. A sequence of three
photographs obtained during the experiment are shown

Fig. 2. Dynamic contact of two discs showing contact area develop- in Fig. 4. Upon detonation of the explosive charge a
ment

which reduces to E = I for the disc - half plane experi-
ments. Results for Homalite 100 with c, = 2!20 msec, a
half sine pulse length of A. = 12.5 mm and, of peak
fringe order N,., = 30 for the disc-disc arrangement (R,
= R, = R = 76.2 mm) and the half plane-disc arrange-
ment (R, = 76.2 mm. R2 = T2. yield contact times of
12 ps and maximum- upper bound for the contact area of Z.
a R < 0.007 (disc-half plane) and a R < 0.005 (disc- . . "
disc).

Time change of size of contact area depends primarily
on the slope of the incident wave. Once contact is estab- Frame 8t=56jA,
lished for an elemental section of the circumference.
energy is transferred to the receptor disc and the ratios of
particle speeds of the respective waves involved in reflec-
tion and transmission across the contact area are the
same as the ratios between the wave amplitudes. A .oact
typical wave front construction for the dynamic contact gth

P'P'Wa,,e induced

Frame t0. t=65 s

Fig. 3. Diffracton and reflection of an incident elastic P wave during FaeI.t=13

forma iton o elastic contact - -- reflected wa',es. - .... transmitted Fig. 4 Centre charge induced dynamic contact showing P wave Inter-

waves 

action
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cylindrical longitudinal Icoipressivet wave, P,. emerges
and radiates from the centre of the disc. Due to cracking
and breakdown of the borehole the rotational symmetry
is disturbed and this iv es iSe to a P wave along with a
random shear wave which quickly outdistances the
emerging cracks. Hence. P and S waves are emitted from P
the detonation site and interact with the contact zone.

The first photograph. frame No. 8. taken at t = 56 ps
after detonation, shows the dynamic situation at a time P
shortly after initial contact is established. The expanding
compressive incident P, wave has been reflected along
the free sections of the boundary to yield a tensile PP,
wave. Part of the energy and momentum of the wave has Frame 12. 1= 127 ps

been transferred across the contact. The exact location of
the front of diffracted transmitted P, P, wave is difficult
to locate u12): however, it is a common practice to iden-
tify the wave front vkith a line drawn just ahead of the
N = 1 2 fringe. Although the contact area is obscured by
a pseudocaustic, an estimate of the contact length was
made. At time t = 56 p1s the contact length was approx-
imately 15 mm.

In frame No. 10 of Fig. 4,. taken at t= 65 ps, the
reflected and transmitted longitudinal and shear pulses
ha,e separated and the resulting fringe pattern in the half
plane is similar to the pattcrn that would be generated
upon detonation of a concentrated charge at (he centre
of the contact zone. With increasing time after contact Frame 15, t= 155 Ms

the fringe pattern in the half plane unfolds into a longitu-
dinal wave PP 1 , a shear wave SP, a von-Schmidt or
head wave, V, P,. and a Rayleigh surface-wave, R, P,.
The corresponding waves in the disc are labeled PIP 1,
S, P, V, P, and R P. Rayleigh-wave-induced cracking
in the disc at a position adjacent to the end of the contact
zone was observed in this experiment.

Progressive dynamic contact formation due to shear
\4'ae interaction witth the contdci is shown in the third
photograph of Fig. 4, frame No. 18 taken at t= 113
pisec. The front of the S. S, wave is located 43 mm below
the half plane boundary and this matches well with the
theoretical predictions. The R2 P, Rayleigh waves have
completely separated from the other bulk waves and pro- Frame 16, t= 175 Ws
pagate with speed CR = 110 mjsec along the free bound-pagae wth seedc,,= 11 msec lon th fre bond- Fig. 6. Top charge induced dynamic contact showing S wave inter

ary. The increased number of fringes at the contact zone c ionact
is indicative of increased contact stresses.

In a second experiment a disc assembly was used with
the same centre charge. The results were qualitatiel
similar to the ones obtained in experiment No. 1.

4.2 Dynamic contact experiments with top charge
The third experiment was done with a disc-disc
assembly. A charge of 100 mg of lead aide Aas explodcd
on the top edge of the first disc. This explosion generates
P and S waves which propagate in the body of the dic
and Rayleigh surface wave. that travel along the circum-
ference of the disc.

The P wave which travels with a velocity ofI = 2120
min/sec is the first wave to interact with the contact. This
interaction is shown in Fig. 5.

Frame No. 7, taken at t = 84 ps after detonation.
shows the establishment of contact where part of ihe

Frame7. tP4 y, wave energy is already transferred across the contact.
Fig. 5 Top charge induced dynamic contact showing P wave inter- The contact area is proportional to the Si7e of the pseudo

action caustic that forms at the contact zone (15). The contact
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The second experiment was performed with the disc -
half plane assembly. The timings were adjusted so that R
wave interaction with the contact could be observed. The
interaction of the P and S wave with the contact were
similar to the previous experiment. The R wave inter-
action is shown in the sequence of photographs in Fig. 7.
Frame No. 13, taken at t = 210 ps, shows the R waves as
they approach the contact region. Since the leading part
of the R wave exerts circumferential tension, the contact

Frame 13. 1=201 ,s area will recede due to radial contraction. This is shown
in frame No. 14, taken at t = 215 ps, where the leading
peaks of the R waves overlap and the contact has been
lost. In frame No. 15, taken at t = 232 puS, the compres-
sive trailing parts of the R waves superimpose and
contact is re-established. Part of the energy of the R
waves is transferred into the half plane, as can be seen
from the fringe development in frame No. 15.

t~Receding contact as leading
peaks superimpose 5 CONCLUSIONS

* ' 7- ' 1 Dynamic photoelastic investigation of the interaction of
Frame 14. t 215A S elastic stress waves with contacts in solids provides full-

field information of diffraction, reflection, and transmis-
sion processes as a function of time. Qualitative
evaluation of dynamic isochromatic fringe patterns
reveals that the individual wave types interact with the
contact region in a distinctive way.

! .Incident P waves give rise to relatively strong trans-
mitted and reflected P, S, and R waves. The intensity of

Et ontact as trailing the r- lected R waves is high enough to initiate cracking
pulesu;rpe on either side of the contact zone in the donor disc. This

occurs due to the joint action of large tensile stresses at
Frame 15. t=232 s the surface in the leading part of the R wave and high

Fig. 7. Top charge induced dynamic contact showing R wave inter- friction in the contact area.
action During S wave interaction with the contact compara-

tively little energy and momentum is transferred across
the contact area. The interface shearing stress and shear

length in this frame is estimated to be approximately deformations reverse sign during S wave interaction.
1.5 mm. Diffraction and transmission of the incident P Very little energy and momentum are transferred into
wave generates P and S waves in both discs and also the receptor solid during the R wave interactions because
gives rise to R waves that travel along the outer bound- of receding contact during the passage and superposition
aries of the discs. of the leading R pulse. Although contact is re-established

The sequence of photographic recordings, Fig. 6, during the passage of the trailing compressive R pulse,
shows the interaction of the incident S wave with the the normal component of displacement is very small and,
contact. Frame No. 12, taken at t = 127 ps, depicts the consequently, little energy is transferred across the

early stage of S wave diffraction about, and S wave trans- contact.

mission across, the contact surface. Due to the shearing Further work on the quantitative evaluation of experi-
nature of the wave the fringe pattern in the vicinity of the mental fringe pattern recordings on the basis of the

contact region is unsymmetrical. Moreover, the experi- approximate wave analysis developed in the paper is in

mental recordings reveal that this fringe pattern oscil- progress. Attention is focused on quantities of interest,
such as distribution of contact stresses as a function oflates about the normal to the contact plane. This effect time and space, and amount of energy and momentum

can be seen in later frames. In frame No. 15 at t = 155 us transferred across the contact area. The experimentally
the smallest visible fringe below the contact in the recep- recorded patterns will serve as input for numerical simu-
tor disc is of order N = 6 as opposed to a maximum reco d na mic conact for ume ri d
visible fringe order of N = 3 in frame No. 12. This lation of dynamic contact behaviour. A hybrid
increase is indicative of severe contact stresses. This is experimental-numerical analysis of contact stress fringe
also evident from the increase of the size of the pseudo- pattern for a quasi static problem where the wave length
caustics at the edges of the contact area. In frame No. 15 is larger than the particle size has already been developed
the contact length is about 2 mm. Frame No. 16 at (16).
t = 175 ps shows the propagation of the S, S, wave and
the R2 S, Rayleigh wave generated by shear wave inter- ACKNOWLEDGEMENT
action. The Rayleigh wave interaction with the contact The authors would like to acknowledge the support of
could not be studied in this experiment as the time dura- NSF under Grant No. CEE 8314233 and Army Research
tion of the experiment was not long enough. Office under Grant No. DAAL03-86-K-0125.
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Paper I

Dynamic Load Transfer due to Explosive Loading
in Virgin and Damaqed Granular Rock Media

by

V. Prakash and A. Shukla
Department of Mechanical Engineering and Applied Mechanics

The University of Rhode Island
Kingston, RI 02881

Abstract

An experimental investigation is conducted to study dynamic load transfer in granular

rock media. The granular media is modelled as a one-dimensional chain of disks fabricated

from four different types of white Vermont marble. The study mainly focusses on the effect

of the microstructure on transient pulse propagation. The transient pulse is generated by

exploding a small charge of lead azide on top of the disk assembly. During wave propagation

dynamic contact strains are recorded using strain gages. This information is used to

calculate wave velocity and attenuation as a function of the cumulative damage in the disk

assembly.

introduction

The response of particulate materials to impulsive loading, has been of substantial

interest to both engineers and researchers. The stress wave propaga.ion in such a media,

due to explosive loading, depends primarily upon the load transfer process by which the

mechanical signals are transmitted. This phenomenon is related to the properties, geometry

as well as the microstructural arrangement of the particles in the media. As the stress wave

passes through the system rearrangement of the particles takes place. Further, depending

upon the amplitude of the stress wave, damage can occur in the particles. Thus the

transmitted stress-wave carries along with it the information regarding the microstructural
re-arrangements of the grains. The wave propagation characteristics of the resulting -&di
is different as compared to that of the virgin material. Moreover, it has been cbserved tha.:

for real earth materials like sand and rock, this load transfer phenomenon is also a funct:on

of the state and the history of the applied load.

The concept of modelling granular media as an array of elastic particles led to the

initial attempts at predicting wave propagation through such media. Early work by lida

[1,2], Hughes and Cross (3], Hughes and Kelly (4], Gassman and Brandt [5. employed a normal

granular contact force concept. An excellent review by Deresiewicz [6] summarizes both the

static and dynamic studies prior to 1958. Experimental studies of the load transfer in

granular media have been previously conducted by Drescher and DeJosselin [7] who simulated

granular media by using assemblies of circular disks. They studied the static load transfer

through the assembly of the disks using photomechanics.

Rossmanith and Shukla (81 extended this idea to the dynamic case with the help of high

speed photography. Additional dynamic work was also carried out by Shukla and Damania [9,

and Shukla and Zhu [10].
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The present paper focuses attention on the wave propagation and load transfer in a

single one dimensional chain of disk assembly. The disks were fabricated from four different

grades of white Vermont marble each having a different microstructure. The stress wave is

generated by exploding a small amount of Lead Azide on top of the disk assembly. The

dependence of the stress wave velocity on the microstructure of various grades of marble

rocks is studied. Attempt has also been made to investigate and quantify the damage that

occurs in these one dimensional aggregate of disks under repeated stress wave loading.

Tensile splitting tests are performed to estimate the residual strength of the damaged disks.

Photomicrographs are taken at various stages of the shcck wave loading process. Moreover,

the stress-wave velocity as well as wave attenuation characteristics are obtained as a

fuinction of the acc,=umlated damage in the grains.

The results indicate that a correlation exists between the grain size and the stress-

wave velocity. It is seen that the average stress-wave velocity is higher for rock disks

with larger grain size. Rapid attenuation in the stress wave peak load occurs in the first

few disks and then attains a steady rate of decay. The residual tensile strength of the

disks first decreases with the applied load and then approaches a limiting value before

eventually fracturing. The stress-wave velocity rises considerably and reaches a terminal

velocity upon repeated shock wave loading. The photomicrographs taken at various stages of

the shock wave loadings indicate that large scale crumbling and pitting takes place near the

contact zone. This leads to microcracking and eventual failure of the disks.

Experimental Procedure and Analysis

A series of experiments are conducted using a single chain assembly of disks as shown

in Fig. 1. These disks were fabricated from four different cores of Vermont marble having

different microstructures as shown in Fig. 2. The disks were 1.25 inches (31.75mm) in

diameter and 0.5 inches (12.7mm) in thickness. The assembly of the disks was explosively

loaded using 15mg of Lead Azide in a specially designed steel charge holder. The resulting

dynamic load transfer phenomenon in the disks was studied using electrical resistance strain

gages. In the experiments the wave length of the explosive loading pulse was sufficiently

large as compared to the disk diameters, thus resulting in a quasi-static type of loading

around the contact zone. Hertz contact theory along with the experimentally obtained strains

were used to obtain the contact stresses, strains and the dynamic loads.

From the Hertz contact stress theory, the stress field equations around the contact

region of two bodies, as shown in Fig. 3, are represented as:

zz- b [z(bi1 -× 2) + 3z 2 (1)

a - -b Iz(b2+2z2+2x 2  h I 2_ - 3xh 2) +
,rA b b (2)

O [(2x 
- 
2b -3z 

2 
) +2rx+2(b 2 x2 -z 

2
) x < l f

b b

2 2+ x2 2
2x-b 2 + O b +2z ) Z 1 -21rz -3xzO2 ]1 (3)ZX -- " 2 2

Ab b
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where 0 and 02 are

0 -" X (M+N)

MN / 2MN+2x, 2z
2
-2b

2 " x (M-N)

MNN 2MN+2x+2zI-2b

M - 1(b+x)'+z
2  N " I(b-x)+z

2  
and

1 1_2 1 2)
- ___ ( + 12)

(A+B) E E,

A - 1/4(1 + I + I + I,) +
R R R R2

1/4[(L - L_ + 1 - 1_)] - 
4( - _)(i - )Sina

RI  Ri  R2  R R I  Ri  R2  R

B -1/4(L + I + 1 + 1L)
R R 2  R' R'

1/4+[(L - L+1 - L)J2- 4(L - L)(L - L)Sin-a

RI  Ri  R2  R' R1 Ri R2  R'

Subscripts 1 and 2 refer to the two bodies making the contact as shown in Fig. 3.

R1 , R1, R 2 and R are the principal radii of curvature at the point of contact and

a is the angle between the corresponding planes of the principal curvatures. "E" is the

modulus of elasticity and 1) is the poisson's ratio.

Since the experiments were conducted for the single chain of disks, the contact stress

field was defined by only one parameter and that is the contact length, 2b. Fr the two-

dimensional plane stress problem the contact strains are given by:

Ce l(a -20 (4)zz E zz xxE

Substituting for o;, and o. from equation (1) and equation (2) and noting that 0=0

(frictionlest case for the single chain experiments) the contact strain is obtained as a

function of the coordinates (x and z) and the contact length (2b). Since the strain gages

are mounted normal to the contact point the coordinate "x" is equal to zero. The contact

strain is plotted as a function of the normal distance from the contact for different values

of (2b) as shown in Fig. 4. The location of the strain gage from the contact is known (i.e.

"z" is known). Also, the strain at that location is known from the strain gage experiment.

Thus by interpolation the contact strain and the contact length can be obtained.

Since the strain gages have a finite size it averages the strain over its grid area.

This average strain is not equal to the strain at the grid geometric center. From the plot

of the strain vs distance it can be seen that steep gradients in the strain exist near the

contact point and the strarin profiles peak around z = 1.0 mm. As the distance normal to the

contact point increases the strain gradients reduce and the strain profiles become fairly
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constant after z = -)Mm. Thus it is important that the strain gages be placed beyond z

-o so as to minimize the averaging error.

To estimate the error induced due to the averaging effect the percentage error is

calculated by considering a strain gage with grid size (LxL) positioned at a height "z"

above the contact point. Now, the strain c at the geometric center of the strain gage is

calculated from equation 4. To evaluate the average strain the strain gage grid is divided

into a matrix of 100 x 100 points and the stfain at each point is evaluated. From this the

average strain is computed. The results are presented in Fig 5, which shows the error due

to averaging effect as a function of the gage grid length, L. The results are plotted for

different heights, z above the contact points. The error is higher for strain gages closer

to the contact points because of the steep strain gradients. Also the error increases as

the strain gage size increases. For the size and the location of the strain gages used in

this study the error iq about 2%.

To investigate the relationship between the wave velocity and the size of thp grains

a one dimensional assembly of disks as described earlier was used. Strain gages were bounded

on four separate disks in the chain at a height of 7mm above the contact point. The strain

gages were suitably connected to the Nicolet Oscilloscope through bridge amplifiers. When

the explosive was fired, the oscilloscope was triggered. Strain as a function of time was

recorded. The transit time and the rise time of the gage are small (less than 1 %) as

compared to the pulse duration. Also the frequency response of the bridge amplifiers was

adequate for the experiments.

To study and quantify the damage induced in the media due to the propagation of the

shock waves both the residual strength as well as the wave velocity was computed for the

single chain of the disk assembly for repeated loadings. The residual tensile strength was

measured by the tensile splitting tests. In these tests the disks fabricated from the cores

of different grades of marble were laid vertically between the loading plates of the Instron

machine in the compression mode. The load was slowly increased at a very slow-rate until

the specimens failed by splitting across the vertical diameter. Assuming linear condition

within the core the approximate tensile strength oT, was calculated using the equation:

2P
a = max (5)

ir DT

where Pmax - applied load at failure

D - Diameter of the core
T - Thickness of the specimen

To estimate the residual strength of the damaged rock disks 15 mg of Lead Azide was

used to generate the shock wave through the assembly of disks. Tensile splitting test was

performed on the first two disks taken out from the top of the assembly. Two new disks were

placed on top of the disk assembly to replace the damaged disks. The chain assembly, this

time was loaded twice, and again the top two disks were taken out and their residual tensile

strength was obtained. This procedure was continued until the residual tensile strength was

obtained for the disks which had been shocked six times.

To study the effect of compaction and the damage of the disks on the wave velocity

strain gages were bonded on the first, second, fourth and the seventh disks in the chain
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assembly. Again, 15mg of lead azide was used to generate the shock wave through the disk
assembly. From the peaks of the strain profile the stress wave velocity was computed every

time the disk assembly was loaded. This procedure was repeated six times, keeping the

location of the strain gages the same, and each time average wave velocity and the stress

wave attenuation was computed. This average wave velocity versus the number of times the

assembly was loaded was plotted to obtain the variation of the wave velocity as a function

of the load history.

RESULTS AND DISCUSSIONS

Wave Velocity in Virgin Rock Disk Assembly

A series of experiments were conducted with strain gages mounted 7mm from the contact
point of the disks. Strain versus time plots at the location of the strain gages were
recorded. A typical strain gage output profile is shown in Fig. 6. Position of the wave
front versus time plots were drawn for marble "A", marble "C" and marble "D" disk assemblies.
The average stress wave velocity was computed by drawing a least square fit line passing
through the experimental points. The results indicate that the average wave velocity
increases with the increasing grain size of the marble. The average grain size
of marble "A" was 0.32mm and the stress wave velocity was 1210 m;sec. The grain size of
marble "C" was higher and the corresponding stress-wave velocity obtained was 1425m/sec
while marble "D" had the largest average grain size and a stress-wave velocity of 1525 m/sec.
This trend is to be expected as the stress wave encounters a fewer number of grain boundaries
or obstacles as it propagates through the granular rock material having a larger grain size.

To study the attenuation in the three different grades of marble mentioned above the
normalized peak strain was plotted against the stress wave propagation distance. As seen
from Fig. 7 all the three different grades of marble follow more or less the same pattern
of attenuation, but the marble with the smaller grain size shows a higher attenuation. At
a given contact the strain increased from zero to a peak value and then gradually decreased
to zero. A typical duration of the pulse at the contact was 75 microseconds. The wavelength
of the pulse was calculated by taking the product of the average wave speed and the pulse
duration at the contact. The wave length obtained was 95 mm (around 4 disk diameter) . Due
to the internal losses within the disk, energy spent in closing the contact and some
frictional and reflection effects, the peak contact loads dropped as the distance from the
explosive loading-was increased. Using the values of the normalized peak strains it is seen
that a rapid attenuation in peak strain occurs as the wave propagates through the first
contact. After this the decay in peak load is gradual with distance and attenuates to 359
of its peak value in the next nine disks.

The tensile splitting tests were performed on all the four different grades of virgin
marble disks. Table "A" lists the tensile failure strength of the four disks. Results
indicate that marble "C" had the highest tensile strength of 1440 N/m while marble I'D" had
the lowest tensile strength of 930N/m2 . Marble "A" and marble "B" had almost similar tensile
strengths of 1145N/m2 and 1125N/m 2 respectively.

WAVE PROPAGATION IN DAMAGED ROCK DISKS

To quantify damage occurring in the rock disks, tensile splitting tests were carried
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out to obtain the residual tensile strength. The tensile strength of the first two disks

was only determined since most of tne attenuation in stress waves occurs in these disks.

Table B lists the residual tensile strength of the first two disks as a function of the

number of tines the assembly was loaded. It is observed that after the passage of the first

shock wave the residual strength of the first disk falls down to almost 40. of its value in

the virgin state. Additional drop of 10 percent in the tensile strength occurs when the

second loading wave passes through the disk assembly. The residual strength remains fairly

constant as tne number of stress-wave loadings are increased fur-ther and eventually the disk

fails by fracturing across the surface.

The tensile strength of the second disk in the assembly drops down by only 10% after

the first two stress waves. This happens because the cumulative damage occurring in the

second disk is small as compared to the first disk as the peak stress value attenuates to

almost 60% by the time the stress wave propagates one disk diameter. As the number of shock

wave loading is increased further the residual strength remains fairly constant until the

fourth loading wave after which the tensile strength falls to 72% of the tensile strength

value ;n the virgin state.

Next, the amount of explosive was gradually increased and its effect on the residual

tensile strenqth studied. The results are shown in Table C. When 15 mg of lead Azide was

used the tensile strength of the second disk falls down to 95% of its value in the virgin

state arter the passage of one shock wave. When the charge is increased to 20mg the tensile

strength ralls down to 90%. As the explosive charge is increased to 50mg the tensile strength

drops considerably to 55%. In case of 20mg, 40mg and 50mg of lead Azide the first disk

tailed by fracturing across the surface. It is observed from all the experiments that the

residual tensile strength of the disks approaches a limiting value of 650N/m 2 after which

upon repeated loading the disk fractures.

The average wave velocity in the chain was calculated as a function of repeated

explosive loading to study the effect of the cumulative damage on the wave velocity. Fig.

% shows the plot of the average wave velocity as a function of the number of loading waves.

The stress wave velocity is seen to increase considerably after the passage of first loading

wave. The stress wave velocity increases to 1400m/sec from 1080m/sec which is the velocity

obtained by loading the undamaged disk chain assembly. As the number of stress wave loadings

is increased further the wave velocity undulates about the terminal velocity of 1450m/sec

and eventually falls down considerably as the cumulative damage increases and fractures the

disk. The increase in wave velocity with increased number of stress wave loading is a result

of the compacting process by which the disks come closer to each other thus increasing the

resultant sti fness of the disk chain assembly. This also results in closing of the

preexisting voils and microcracks in the disks. The surface cracks impede the progress of

the stress-wave as it has to travel around these cracks. Thus the compactive process re-

duces the transit time of propagation of stress waves resulting in an increase in velocity.

As the number of shock wave loadings is increased damage occurs around the contact zone

iue to high contact stresses and large scale crumbling and pitting is observed near the

contact zone. Figure 9 shows the photomicrographs of the area near the contact zone of the

lisks after the passage of the first two stress waves. The stress wave velocity reaches a
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terminal velocity at this stage. Upon repeated loading the microcracks grow and engulf the

entire contact zone. These microcracks combine together to create open cracks on the disk

surface as shown in photomicrograph in Fig. 10. This microcracking of the contact zone

lowers the stiffness of the assembly and the cracks impede the propagation of the stress wave

and hence lower the stress wave velocity.

CONCLUSfONS

Dynamic strain gage technique is employed to study wave propagation and dynamic load

transfer in granular rock media. The granular rock media was modelled as a one dimensional

array of circular disks fabricated from different grades of Vermont marbles having different

microstructures. The dynamic data was analyzed to obtain average wave velocity, stress wave

attenuation for both virgin as well as damaged rock media. The residual strength of the rock

disks was estimated after the passage of the stress wave using tensile splitting tests. The

damage in the disks was studied by taking optical micrographs of the disk surface. The

results indicate that:

1. A correlation exists between the microstructure of the rock material and the stress
wave velocity. Larger the grain size of the rock media higher is the stress-wave
velocity.

2. Rapid attenuation in the peak contact loads, and thus the amplitude of the stress wave,
takes place initially as the wave propagates through the granular rock media and then
approaches a steady rate of decay. It is observed that the stress wave attenuation
decreases as the average grain size of the marble increases.

3. The stress wave velocity increases sharply after the passage of the first shock wave.
Upon repeated explosive loading the stress-wave velocity approaches a terminal velocity
and eventually falls off as the disk fails by fracturing across the surface.

4. The residual tensile strength of the disk decreases as the number of shock waves are
increased. Further, a limiting residual strength value exists which remains fairly
constant upon repeated loading until the disk fractures.
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TABLE A

TE.'NSILE STRENGTH N'm: OBTAINED FROM TENSILE SPLITTING TEST

ROCK AVERAGE

TYE 2 3 STRENGTH

YARBLE A [ s130 1 040 1180 1180 l11l

M!ARBLE B .280 1.320 1170 1070 125

MARBLE C i -o60 15B0 1380 1385 10.1

MARBLE D 800 J 11.0 i120 670 932

TABL- B

NUMBER OF TIMES THE RESIDUAL TENSILE
SHOCK WAVE PASSED STRENGTH
THROUGH THE DISK DISK (N/mn)
CHAIN ASSEMBLY NUMBER
(15 mg OF LEAD AZIDE)

1 610
1 2 1160

1 610
2 2 980

1 640
3 2 II

1 FRACTURED
42 1030

1 670
5 2 690

TABLE C

LEAD AZIDE RESIDUAL TENSILE STRENGTH
(mg) (N/m)

DISK =1 DISK =2

15 610 1160
20 fractured 1070
40 fractured 780

50 fractured 653
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